Tìm 3S - 22003 biết :
S= 1-2+22-23+.......+22002
GIÚP MIK VS CÁC BẠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+2+2^2+...+2^{2002}\)
\(2A=2+2^2+2^3+...+2^{2003}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)
\(A=2^{2003}-1\)
Mà: \(2^{2003}=2^{2003}\)
\(\Rightarrow2^{2003}-1< 2^{2003}\)
\(\Rightarrow A< B\)
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
Câu 13
S = 1 + 2 + 2² + ... + 2¹⁰
2S = 2 + 2² + 2³ + ... + 2¹¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹¹) - (1 + 2 + 2² + ... + 2¹⁰)
= 2¹¹ - 1
= 2048 - 1
= 2047
Câu 14
3n + 2 = 3n - 6 + 8 = 3(n - 2) + 8
Để (3n + 2) ⋮ (n - 2) thì 8 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ n ∈ {-6; -2; 0; 1; 3; 4; 6; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 6; 10}
Lời giải:
$E=1-2+22-23+24-25+.....+21000$
$=(1-2)+(22-23)+(24-25)+......+(20998-20999)+21000$
$=(-1)+(-1)+(-1)+....+(-1)+21000$
Số lần xuất hiện của -1: $[(20999-22):1+1]:2+1=10490$
$E=(-1).10490+21000=10510$
ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)
=> 2S + S = -22015 + 1
=> 3S = -22015 + 1
=> 3S - 1 = -22015
=> 1 - 3S = 22015
( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(1-\frac{1}{2n+1}=\frac{50}{51}\)
=> \(\frac{1}{2n+1}=1-\frac{50}{51}=\frac{1}{51}\)
=> 2n + 1 = 51
=> 2n = 50
=> n = 25
Vậy n = 25