cho tỉ lệ thức : \(\frac{2020a+2019b+c}{2020a+2019b-c}=\frac{2020a-2019b+c}{2020a+2019b-c}\)trong đó b khác 0. Chứng minh rằng c = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2020a}{2020c}=\frac{2019b}{2019d}=\frac{2020a+2019b}{2020c+2019d}=\frac{2020a-2019b}{2020c-2019d}\)
\(\Rightarrow\frac{2020a+2019b}{2020a-2019b}=\frac{2020c+2019d}{2020c-2019d}\)
Ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\Rightarrow\left\{{}\begin{matrix}a=3k\\b=5k\\c=7k\end{matrix}\right.\)
\(\Rightarrow\frac{2019b-2020a}{2019c-2020b}=\frac{2019.5k-2020.3k}{2019.7k-2020.5k}=\frac{4035k}{4033k}=\frac{4035}{4033}>\frac{4033}{4033}=1\)
Vậy \(\frac{2019b-2020a}{2019c-2020b}>1\left(đpcm\right)\)
\(-3\le x\le1\)
Pt tuơng đương:
\(\left(2m-4\right)\sqrt{\dfrac{x+3}{4}}+\left(4m-2\right)\sqrt{\dfrac{1-x}{4}}+m-1=0\) (1)
Do \(\left(\sqrt{\dfrac{x+3}{4}}\right)^2+\left(\sqrt{\dfrac{1-x}{4}}\right)^2=1\)
\(\Rightarrow\) Đặt \(\left\{{}\begin{matrix}\sqrt{\dfrac{x+3}{4}}=sint\\\sqrt{\dfrac{1-x}{4}}=cost\end{matrix}\right.\) với \(0\le t\le\dfrac{\pi}{2}\)
Pt (1) trở thành: \(\left(2m-4\right)sint+\left(4m-2\right)cost+m-1=0\)
\(\Leftrightarrow2msint+4mcost+m=4sint+2cost+1\)
\(\Leftrightarrow m\left(2sint+4cost+1\right)=4sint+2cost+1\)
\(\Leftrightarrow m=\dfrac{4sint+2cost+1}{2sint+4cost+1}\)
Xét hàm \(f\left(t\right)=\dfrac{4sint+2cost+1}{2sint+4cost+1}\)
\(\Rightarrow f'\left(t\right)=\dfrac{2\left(cost+sint\right)+12}{\left(2sint+4cost+1\right)^2}>0\) \(\forall t\in\left[0;\dfrac{\pi}{2}\right]\)
\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left[0;\dfrac{\pi}{2}\right]\)
\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(\dfrac{\pi}{2}\right)\Leftrightarrow\dfrac{3}{5}\le f\left(t\right)\le\dfrac{5}{3}\)
Vậy để pt có nghiệm thì \(\dfrac{3}{5}\le m\le\dfrac{5}{3}\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{5}\\b=\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow S=1981\)
bạn giỏi quá.
Thanks rất nhiều.
Cộng đồng hoc24 là một môi trường giáo dục thật tuyệt!
Dăm ba mấy bài đặt k:v
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)
\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)
Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)
Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)
Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng