Cho hàm số bậc nhất (d): y= (2m-3)x -4
Tìm m để (d) cắt (d'): y= x+2 tại M(xM;yM) sao cho biểu thức P= y2 - 2x2 đạt max
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số đồng biến thì 2m-3>0
hay \(m>\dfrac{3}{2}\)
Để hàm số nghịch biến thì 2m-3<0
hay \(m< \dfrac{3}{2}\)
b: Thay x=2 và y=5 vào hàm số, ta được:
\(\left(2m-3\right)\cdot2+4=5\)
\(\Leftrightarrow2m-3=\dfrac{1}{2}\)
\(\Leftrightarrow2m=\dfrac{7}{2}\)
hay \(m=\dfrac{7}{4}\)
Lời giải:
a. Với $m=1$ thì ptđt $(d)$ là: $y=x+1$
b. Trung điểm của 2 đường thẳng??? Đường thẳng thì làm gì có trung điểm hả bạn? Đoạn thẳng thì có.
c. $(d)$ cắt $y=x-2$ tại điểm có hoành độ $-1$
$\Leftrightarrow$ PT hoành độ giao điểm $(2-m)x+2m-1-(x-2)=0$ nhận $x=-1$ là nghiệm
$\Leftrightarrow (2-m)(-1)+2m-1-(-1-2)=0$
$\Leftrightarrow m=0$
b: Phương trình hoành độ giao điểm là:
-x+3=-2x+1
\(\Leftrightarrow x=-2\)
Thay x=-2 vào y=-x+3, ta được;
y=2+3=5
Thay x=-2 và y=5 vào (d), ta được:
\(-2\left(2-m\right)+2m-1=5\)
\(\Leftrightarrow2m-4+2m-1=5\)
\(\Leftrightarrow4m=10\)
hay \(m=\dfrac{5}{2}\)
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
Thay x=-11 và y=0 vào (d), ta được:
-11(m-3)+2m-5=0
=>-11m+33+2m-5=0
=>-9m+28=0
=>m=28/9
=>(d): y=1/9x+56/9-5=1/9x+11/9
Lời giải:
a. $(d)$ cắt trục tung tại điểm có tung độ $3$, tức là cắt trục tung tại điểm $(0;3)$
$(0;3)\in (d)$
$\Leftrightarrow 3=(m+2).0+2m^2+1$
$\Leftrightarrow 2m^2=2$
$\Leftrightarrow m^2=1$
$\Leftrightarrow m=\pm 1$
Khi $m=1$ thì ta có hàm số $y=3x+3$
Khi $m=-1$ thì ta có hàm số $y=x+3$
Bạn có thể tự vẽ 2 đths này.
b.
Để $(d)$ cắt $(d')$ thì: $m+2\neq 2m+2$
$\Leftrightarrow m\neq 0$
ko ai trả lời à
tui cx đang rất cần