Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT hoành độ giao điểm:
$x^2-(m-3)x-m+4=0(*)$
Để (d) và (P) cắt nhau tại hai điểm phân biệt $A(x_1,y_1)$ và $B(x_2,y_2)$ thì PT $(*)$ có 2 nghiệm $x_1,x_2$ phân biệt
Điều này xảy ra khi $\Delta=(m-3)^2+4(m-4)>0$
$\Leftrightarrow m^2-2m-7>0\Leftrightarrow m> 2\sqrt{2}+1$ hoặc $m< 1-2\sqrt{2}$
Áp dụng định lý Viet: $x_1+x_2=m-3$ và $x_1x_2=-m+4$
Để tam giác $OAB$ vuông tại $O$ thì:
$OA^2+OB^2=AB^2$
$\Leftrightarrow x_1^2+y_1^2+x_2^2+y_2^2=(x_1-x_2)^2+(y_1-y_2)^2$
$\Leftrightarrow x_1x_2+y_1y_2=0$
$\Leftrightarrow x_1x_2+(x_1x_2)^2=0$
$\Leftrightarrow x_1x_2(x_1x_2+1)=0$
$\Leftrightarrow x_1x_2=0$ hoặc $x_1x_2=-1$
$\Leftrightarrow -m+4=0$ hoặc $-m+4=-1$
$\Leftrightarrow m=4$ hoặc $m=5$ (đều thỏa mãn)
PTHĐGĐ là:
x^2-(m+2)x+2m=0
Δ=(m+2)^2-4*2m
=m^2+4m+4-8m
=m^2-4m+4
=(m-2)^2
Để PT có hai nghiệm phân biệt thì Δ>0
=>m-2<>0
=>m<>2
P=y1+y2-x1x2
=x1^2+x2^2-x1x2
=(x1+x2)^2-3x1x2
=(m+2)^2-3*2m
=m^2+4m+4-6m
=m^2-2m+1+3
=(m-1)^2+3>=3
Dấu = xảy ra khi m=1
a: Để hàm số đồng biến thì 2m-3>0
hay \(m>\dfrac{3}{2}\)
Để hàm số nghịch biến thì 2m-3<0
hay \(m< \dfrac{3}{2}\)
b: Thay x=2 và y=5 vào hàm số, ta được:
\(\left(2m-3\right)\cdot2+4=5\)
\(\Leftrightarrow2m-3=\dfrac{1}{2}\)
\(\Leftrightarrow2m=\dfrac{7}{2}\)
hay \(m=\dfrac{7}{4}\)
Lời giải:
a. Với $m=1$ thì ptđt $(d)$ là: $y=x+1$
b. Trung điểm của 2 đường thẳng??? Đường thẳng thì làm gì có trung điểm hả bạn? Đoạn thẳng thì có.
c. $(d)$ cắt $y=x-2$ tại điểm có hoành độ $-1$
$\Leftrightarrow$ PT hoành độ giao điểm $(2-m)x+2m-1-(x-2)=0$ nhận $x=-1$ là nghiệm
$\Leftrightarrow (2-m)(-1)+2m-1-(-1-2)=0$
$\Leftrightarrow m=0$
b: Phương trình hoành độ giao điểm là:
-x+3=-2x+1
\(\Leftrightarrow x=-2\)
Thay x=-2 vào y=-x+3, ta được;
y=2+3=5
Thay x=-2 và y=5 vào (d), ta được:
\(-2\left(2-m\right)+2m-1=5\)
\(\Leftrightarrow2m-4+2m-1=5\)
\(\Leftrightarrow4m=10\)
hay \(m=\dfrac{5}{2}\)
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
Thay x=-11 và y=0 vào (d), ta được:
-11(m-3)+2m-5=0
=>-11m+33+2m-5=0
=>-9m+28=0
=>m=28/9
=>(d): y=1/9x+56/9-5=1/9x+11/9
ko ai trả lời à
tui cx đang rất cần