K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

C1: Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{x+2}{x+1}=\frac{x-1}{x}=\frac{x+2-\left(x-1\right)}{x+1-x}=\frac{x+2-x+1}{x+1-x}=\frac{3}{1}=3\)

Do đó: \(\frac{x-1}{x}=3\)\(\Rightarrow x-1=3x\)\(\Rightarrow x-3x=1\)\(\Rightarrow-2x=1\)\(\Rightarrow x=-\frac{1}{2}\)

C2: \(\frac{x+2}{x+1}=\frac{x-1}{x}\)

\(\Rightarrow\left(x+2\right)x=\left(x+1\right)\left(x-1\right)\)

\(\Rightarrow x^2+2x=\left(x+1\right)x-\left(x+1\right).1\)

\(\Rightarrow x^2+2x=x^2+x-x-1\)\(\Rightarrow x^2+2x=x^2-1\)\(\Rightarrow x^2-x^2+2x=-1\)\(\Rightarrow2x=-1\)\(\Rightarrow x=-\frac{1}{2}\)

26 tháng 11 2016

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

26 tháng 11 2016

khó quá

a)Ta có:

\(\frac{x-1}{x+2}=\frac{4}{5}\Leftrightarrow5\left(x-1\right)=4\left(x+2\right)\)

\(\Leftrightarrow5x-5=4x+8\)

\(\Leftrightarrow5x-4x=8+5\)

\(\Leftrightarrow x=13\)

b)Ta có:

\(2^{2x+1}+4^{x+3}=2^{2x+1}+2^{2x+6}=2^{2x+1}\left(1+2^5\right)=2^{2x+1}.33=264\Leftrightarrow2^{2x+1}=8=2^3\)\(\Rightarrow2x+1=3\Leftrightarrow2x=2\Leftrightarrow x=1\)

c)Ta có:

\(\frac{x^2}{-8}=\frac{27}{x}\Leftrightarrow x^3=-8.27=-216\Leftrightarrow x=-6\)

d)Ta có:

\(\frac{x+7}{-20}=\frac{-5}{x+7}\Leftrightarrow\left(x+7\right)^2=\left(-20\right)\left(-5\right)=100\Leftrightarrow\left[{}\begin{matrix}x+7=10\\x+7=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-17\end{matrix}\right.\)e)Ta có:

\(\frac{x}{-8}=\frac{2}{-x^3}\Leftrightarrow x.\left(-x^3\right)=-8.2\)

\(\Leftrightarrow-x^4=-16\Leftrightarrow x^4=16\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

6 tháng 10 2019

Áp dụng t/c dãy tỉ số bằng nhau có:

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x-xyz-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)

=> \(\frac{x^2-yz}{x\left(1-yz\right)}=x+y+z\)

<=> \(\frac{x^2-yz}{x\left(1-yz\right)}-\frac{\left(x+y+z\right)x\left(1-yz\right)}{x\left(1-yz\right)}=0\)

<=> \(\frac{x^2-yz-\left(x^2+yx+zx\right)\left(1-yz\right)}{x\left(1-yz\right)}\)=0

<=> \(x^2-yz-x^2+x^2yz-xy+xy^2z-xz+xyz^2=0\)

<=> \(-yz-xy-xz+xyz\left(x+y+z\right)\)=0

<=> \(xyz\left(x+y+z\right)=yz+xy+xz\)

<=>\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)( chia cả hai vế cho xyz với x,y,z khác 0)

26 tháng 11 2019

a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)

22 tháng 11 2019

\(a.\frac{x-1}{x+2}=\frac{4}{5}\)

\(\Rightarrow\frac{x+2-3}{x+2}=\frac{4}{5}\)

\(\Rightarrow1-\frac{3}{x+2}=\frac{4}{5}\)

\(\Rightarrow\frac{3}{x+2}=1-\frac{4}{5}\)

\(\Rightarrow\frac{3}{x+2}=\frac{1}{5}\)

\(\Rightarrow\frac{3}{x+2}=\frac{3}{15}\Rightarrow x+2=15\)

\(\Rightarrow x=13\)( thỏa mãn )

4 tháng 8 2020

Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé 

vô phần thống kê hỏi đáp của mình để coi hình nhéolmm

5 tháng 8 2020

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)

\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)

\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)

\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)

\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)

\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)

27 tháng 3 2020
https://i.imgur.com/PTEMisy.jpg
27 tháng 3 2020

https://hoc24.vn/hoi-dap/question/697806.html