K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé 

vô phần thống kê hỏi đáp của mình để coi hình nhéolmm

5 tháng 8 2020

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)

\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)

\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)

\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)

\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)

\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)

22 tháng 8 2020

Từ \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{-2}{x^2}=\frac{-xz^2-yz^2}{z^2+1}\)(1)

=> \(\frac{x+y}{-17}=\frac{-xz^2-yz^2}{z^2+1}\Rightarrow\frac{x+y}{-17}=\frac{-z^2\left(x+y\right)}{z^2+1}\)

=> (z2 + 1)(x + y)  = 17z2(x + y)

=> z2 + 1 = 17z2

=> 16z2 = 1

=> \(z^2=\frac{1}{16}\Rightarrow\orbr{\begin{cases}z=\frac{1}{4}\\z=-\frac{1}{4}\end{cases}}\)

Từ (1) => \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{3x+y-x-y}{47+17}=\frac{2x}{64}=\frac{x}{32}\)

Kết hợp với đề bài => \(\frac{x}{32}=\frac{-2}{x^2}\Rightarrow x^3=-64\Rightarrow x=-4\)

\(\frac{3x+y}{47}=\frac{x+y}{-17}\Rightarrow-17\left(3x+y\right)=47\left(x+y\right)\)

=> - 51x - 17y = 47x + 47y

=> -51x - 47x = 17y + 47y

=> -98x = 64y

=> -49x = 32y

=> -49 x (-4) = 32y

=> 196 = 32y

=> y = 6,125

Vậy các cặp (x;y;z) thỏa mãn là (-4 ;  6,125 ; -1/4) ; (-4 ; 6,125 ; 1/4)

28 tháng 1 2019

CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)

Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)

Ta lại có : \(0\le x\le1;0\le y\le1\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\)

\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)

Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)

16 tháng 5 2020

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)

Từ (4), (5) => đpcm

28 tháng 2 2019

Ta có: \(z^2=2\left(xz+yz-xy\right)=2xz+2yz-2xy\)

Xét:

\(x^2+\left(x-z\right)^2=x^2+z^2-z^2+\left(x-z\right)^2\)\(=\left(x-z\right)^2+2xz-\left(2xz+2yz-2xy\right)+\left(x-z\right)^2\)

\(=\left(x-z\right)^2+2xy-2yz+\left(x-z\right)^2=\left(x-z\right)^2+2y\left(x-z\right)+\left(x-z\right)^2\)

\(=\left(x-z\right)\left(x-z+2y+x-z\right)=\left(x-z\right)\left(2x+2y-2z\right)\)                                    (1)

Xét:

\(y^2+\left(y-z\right)^2=y^2+z^2-z^2+\left(y-z\right)^2\)\(=\left(y-z\right)^2+2yz-\left(2xz+2yz-2xy\right)\)

\(=\left(y-z\right)^2+2xy-2xz+\left(y-z\right)^2=\left(y-z\right)^2+2x\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(y-z\right)\left(y-z+2x+y-z\right)=\left(y-z\right)\left(2x+2y-2z\right)\)                                      (2)

Từ (1); (2) => \(\frac{x^2+\left(x-z\right)^2}{y^2+\left(y-z\right)^2}=\frac{\left(x-z\right)\left(2x+2y-2z\right)}{\left(y-z\right)\left(2x+2y-2z\right)}=\frac{x-z}{y-z}\) \(\left(ĐPCM\right)\)                    

25 tháng 7 2019

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

25 tháng 7 2019

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

15 tháng 6 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.