Giúp mình với TT
1. Tồn tại hay không các số hữu tỉ x,y thoả mãn x^2 + y^2 = 3
2. Tồn tại hay không các số hữu tủ x,y thoả mãn x^3 + 2y^3 = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)
mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)
chúc bạn học tốt
#)Giải :
Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6
Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)
\(\Rightarrow a^2=6b^2\)
\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)
Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)
Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6
=> đpcm
Lời giải:
$x^3+y^3+z^3=x+y+z+2020$
$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$
$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$
Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$
$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$
Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.
\(Giải.\)
\(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\Leftrightarrow\left(x+1\right)\left(x-1\right)=2y^2\left(chẵn\right)\)
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn