K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)

mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)

chúc bạn học tốt

5 tháng 7 2019

#)Giải :

Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6

Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)

\(\Rightarrow a^2=6b^2\)

\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)

Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)

Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6

=> đpcm