K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

\(\left(3x-1\right)^2=25\)

\(\left(3x-1\right)^2=5^2\)

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

14 tháng 12 2019

\(\left(3x-1\right)^2=25\)

\(\Leftrightarrow3x-1=5\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

8 tháng 8 2016

A=(x+1)(x+2)(x+3)(x+4)-24

=(x2+5x+4)(x2+5x+6)-24

Đặt t=(x2+5x+4) ta có:

t(t+2)-24=t2+6t-2t-24

=t(t+6)-4(t+6)

=(t-4)(t+6).Thay vào ta đc:

(x2+5x+4-4)(x2+5x+4+6)=(x2+5x)(x2+5x+10) 

=x(x+5)(x2+5x+10)

B=(x2+3x+2)(x2+7x+120-24)

=(x2+3x+2)(x2+7x+96)

=(x2+2x+x+2)(x2+7x+96)

=[x(x+2)+(x+2)](x2+7x+96)

=(x+1)(x+2)(x2+7x+96)

C và D bn cx lm tương tự

24 tháng 11 2019

\(\left(2x^2+3x-1\right)^2-5\left(2x^2+3x+3\right)+24=0\)(1)

Đặt \(2x^2+3x+1=a\)

Thay vào (1) ta được \(\left(a-2\right)^2-5\left(a+2\right)+24=0\)

\(\Leftrightarrow a^2-4a+4-5a-10+24=0\)

\(\Leftrightarrow a^2-9a+18=0\)

\(\Leftrightarrow a^2-3a-6a+18=0\)

\(\Leftrightarrow\left(a-3\right)\left(a-6\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=6\end{matrix}\right.\)

Suy ra \(\left[{}\begin{matrix}2x^2+3x+1=3\\2x^2+3x+1=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0,5\\x=-2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x\in\left\{0,5;-2,5;1;-2\right\}\)

24 tháng 11 2019

Violympic toán 8

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

21 tháng 3 2020

x3 + 3x2 + 3x = 7

<=> x3 + 3x2 + 3x - 7 = 0

<=> (x - 1)(x2 + 4x + 7) = 0

<=> x - 1 = 0 hoặc x2 + 4x + 7 khác 0

<=> x - 1 = 0

<=> x = 1

21 tháng 3 2020

a) ( x2 + 3 x + 2 ) . ( x2 + 3x+ 3 ) - 2 =0

<=>x4 + 3x3 + 3x2 + 3x3 + 9x2 + 9x + 2x2 + 6x + 6 - 2 = 0

<=> x4 +  6x + 14x2 + 15x + 4 = 0

<=> x4 + 3x3 + 3x3 + x2 + 9x2 + 4x2 + 3x + 12x + 4 = 0

<=> x2 . ( x2 +3x + 1 ) + 3x . ( x2 +3x + 1 ) + 4. ( x2 + 3x + 1 ) = 0

<=> ( x2 + 3x + 1 ) . ( x2 + 3x + 4 ) = 0

<=> \(\orbr{\begin{cases}x^2+3x+1=0\\x^2+3x+4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=\frac{-3-\sqrt{5}}{2}\end{cases}}\)

          \(x\notinℝ\)

<=> \(\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=\frac{-3-\sqrt{5}}{2}\end{cases}}\)

Nghiệm cuối cùng là : x1 = \(\frac{-3+\sqrt{5}}{2}\);x2 = \(\frac{-3-\sqrt{5}}{2}\)

b) ( x + 1 ) . ( x + 2 ) . ( x + 3 ) . ( x + 4 )  - 24 = 0

<=> ( x2 + 2x + x + 2 ) . ( x + 3 ) . ( x + 4 ) - 24 = 0

<=> ( x2 + 3.x + 2 ) . ( x+3) . ( x + 4 ) -24         = 0

<=> ( x3 + 3.x 2 + 3.x2 + 9x + 2x + 6 ) . ( x + 4 ) - 24 = 0 

<=> ( x3 + 3x + 2 ) . ( x + 3 ) .( x + 4 ) = 0

<=> ( x3 + 3x2 + 3x2 + 9x + 2x + 6 ) . ( x + 4) - 24 = 0

<=> ( x3 + 6.x2 + 11.x + 6 ) . ( x + 4 ) -24 = 0 

<=> x4 + 4.x3 + 6.x3 + 24.x2 + 11.x2 + 44.x + 6.x + 24 - 24 =0

<=> x4 + 10.x3+ 35. x + 50.x = 0

<=> x. ( x3 + 10.x2 + 35 .x + 50 ) = 0

<=> x. ( x3 + 5.x2 +5.x2 + 25.x+ 10 + 50 ) = 0

<=> x. [ x. ( x+5 ) + 5.x. ( x+5 ) + 10.( x + 5 ) ] = 0

<=> x. ( x + 5 ) . ( x2 + 5.x + 10 ) = 0

=> \(\hept{\begin{cases}x=0\\x+5=0\\x^2+5.x+10=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\x=-5\\x\notinℝ\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)

Nghiệm cuối cùng là : x1 = -5 ; x2 = 0

c) x3 + 3.x2 + 3x = 7

<=> x3 + 3.x2 + 3x - 7 = 0

<=> ( x + 1 )3 - 8          = 0

<=> ( x + 1 )3               = 8

<=> ( x + 1 ) 3               = 23 

<=> x + 1                      = 2

<=> x                              =1

Vậy x = 1

18 tháng 7 2019
https://i.imgur.com/8qYu8qM.jpg
23 tháng 8 2018

c/ đk: x khác 1; x khác -3

\(\dfrac{3x-1}{x-1}+\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Rightarrow\left(3x+1\right)\left(x+3\right)+\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)

\(\Leftrightarrow3x^2+10x+3+2x^2+3x-5+4=x^2+2x-3\)

\(\Leftrightarrow4x^2+11x+5=0\)

\(\Leftrightarrow\left(4x^2+2\cdot2x\cdot\dfrac{11}{4}+\dfrac{121}{16}\right)-\dfrac{41}{16}=0\)

\(\Leftrightarrow\left(2x+\dfrac{11}{4}\right)^2=\dfrac{41}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{11}{4}=\dfrac{\sqrt{41}}{4}\\2x+\dfrac{11}{4}=-\dfrac{\sqrt{41}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{41}}{8}\\x=\dfrac{-11-\sqrt{41}}{8}\end{matrix}\right.\)

Vậy.........

d/ \(\dfrac{12x+1}{6x-2}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(9x^2-1\right)}\)

đk: \(x\ne\pm\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{12x+1}{2\left(3x-1\right)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)

\(\Rightarrow2\left(12x+1\right)\left(3x+1\right)-4\left(9x-5\right)\left(3x-1\right)=108x-36x^2-9\)

\(\Leftrightarrow72x^2+24x+6x+2-108x^2+36x-60x-20-108x+36x^2+9=0\)

\(\Leftrightarrow-102x-9=0\)

\(\Leftrightarrow-102x=9\Leftrightarrow x=-\dfrac{3}{34}\)(TM)

Vậy.........

23 tháng 8 2018

a/ \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=-24\)

\(\Leftrightarrow2x\left(x^2+2x+1\right)=-24\)

\(\Leftrightarrow2x^3+4x^2+2x+24=0\)

\(\Leftrightarrow2x^3-2x^2+8x+6x^2-6x+24=0\)

\(\Leftrightarrow x\left(2x^2-2x+8\right)+3\left(2x^2-2x+8\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+8\right)\left(x+3\right)=0\)

\(\Leftrightarrow2\left(x^2-x+4\right)\left(x+3\right)=0\)

Ta thấy: \(x^2-x+4=\left(x^2-2x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

=> x+ 3 = 0 <=> x= -3

Vậy......

b/ \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+x^2+5x+2x^2+x+5=0\)

\(\Leftrightarrow x\left(2x^2+x+5\right)+\left(2x^2+x+5\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

Ta thấy: \(2x^2+x+5=\left(\sqrt{2}x+2\cdot\sqrt{2}x\cdot\dfrac{\sqrt{2}}{4}+\dfrac{1}{8}\right)+\dfrac{39}{8}=\left(\sqrt{2}x+\dfrac{\sqrt{2}}{4}\right)^2+\dfrac{39}{8}>0\)

=> x + 1 = 0 <=> x = -1

Vậy....