Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(9\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow9x+18-3x-6=0\)
\(\Leftrightarrow6x+12=0\)
\(\Leftrightarrow x=-2\)
e. \(\left(2x-1\right)^2-45=0\)
\(\Leftrightarrow4x^2-2x+1-45=0\)
\(\Leftrightarrow4x^2-2x-44=0\)
Đến đó tự giải tiếp nha!
c. \(2\left(2x-5\right)-3x=0\)
\(\Leftrightarrow4x-10-3x=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
g. \(2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0
=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0
=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0
=> -24x + 7 = 0
=> - 24x = -7
=> x = 7/24
b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5
=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5
=> 6x - 5 = -5
=> 6x = 0
=> x = 0
c, x^2 = -6x - 8
=> x^2 + 6x + 8 = 0
=> x^2 + 2.x.3 + 9 - 1 = 0
=> (x + 3)^2 = 1
=> x + 3 = 1 hoặc x + 3 = -1
=> x = -2 hoặc x = -4
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)
\(3x=5\)
\(x=\frac{5}{3}\)
b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)
\(3x-8=2x-7\)
\(x=1\)
c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)
\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)
\(4x^2-3x-18=4x^2+3x\)
\(6x=-18\)
\(x=-3\)
d) Sai đề
e) ko bt
![](https://rs.olm.vn/images/avt/0.png?1311)
c/ đk: x khác 1; x khác -3
\(\dfrac{3x-1}{x-1}+\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
\(\Rightarrow\left(3x+1\right)\left(x+3\right)+\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)
\(\Leftrightarrow3x^2+10x+3+2x^2+3x-5+4=x^2+2x-3\)
\(\Leftrightarrow4x^2+11x+5=0\)
\(\Leftrightarrow\left(4x^2+2\cdot2x\cdot\dfrac{11}{4}+\dfrac{121}{16}\right)-\dfrac{41}{16}=0\)
\(\Leftrightarrow\left(2x+\dfrac{11}{4}\right)^2=\dfrac{41}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{11}{4}=\dfrac{\sqrt{41}}{4}\\2x+\dfrac{11}{4}=-\dfrac{\sqrt{41}}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{41}}{8}\\x=\dfrac{-11-\sqrt{41}}{8}\end{matrix}\right.\)
Vậy.........
d/ \(\dfrac{12x+1}{6x-2}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(9x^2-1\right)}\)
đk: \(x\ne\pm\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{12x+1}{2\left(3x-1\right)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)
\(\Rightarrow2\left(12x+1\right)\left(3x+1\right)-4\left(9x-5\right)\left(3x-1\right)=108x-36x^2-9\)
\(\Leftrightarrow72x^2+24x+6x+2-108x^2+36x-60x-20-108x+36x^2+9=0\)
\(\Leftrightarrow-102x-9=0\)
\(\Leftrightarrow-102x=9\Leftrightarrow x=-\dfrac{3}{34}\)(TM)
Vậy.........
a/ \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)
\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=-24\)
\(\Leftrightarrow2x\left(x^2+2x+1\right)=-24\)
\(\Leftrightarrow2x^3+4x^2+2x+24=0\)
\(\Leftrightarrow2x^3-2x^2+8x+6x^2-6x+24=0\)
\(\Leftrightarrow x\left(2x^2-2x+8\right)+3\left(2x^2-2x+8\right)=0\)
\(\Leftrightarrow\left(2x^2-2x+8\right)\left(x+3\right)=0\)
\(\Leftrightarrow2\left(x^2-x+4\right)\left(x+3\right)=0\)
Ta thấy: \(x^2-x+4=\left(x^2-2x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
=> x+ 3 = 0 <=> x= -3
Vậy......
b/ \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow2x^3+x^2+5x+2x^2+x+5=0\)
\(\Leftrightarrow x\left(2x^2+x+5\right)+\left(2x^2+x+5\right)=0\)
\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)
Ta thấy: \(2x^2+x+5=\left(\sqrt{2}x+2\cdot\sqrt{2}x\cdot\dfrac{\sqrt{2}}{4}+\dfrac{1}{8}\right)+\dfrac{39}{8}=\left(\sqrt{2}x+\dfrac{\sqrt{2}}{4}\right)^2+\dfrac{39}{8}>0\)
=> x + 1 = 0 <=> x = -1
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
\(\left(2x^2+3x-1\right)^2-5\left(2x^2+3x+3\right)+24=0\)(1)
Đặt \(2x^2+3x+1=a\)
Thay vào (1) ta được \(\left(a-2\right)^2-5\left(a+2\right)+24=0\)
\(\Leftrightarrow a^2-4a+4-5a-10+24=0\)
\(\Leftrightarrow a^2-9a+18=0\)
\(\Leftrightarrow a^2-3a-6a+18=0\)
\(\Leftrightarrow\left(a-3\right)\left(a-6\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=6\end{matrix}\right.\)
Suy ra \(\left[{}\begin{matrix}2x^2+3x+1=3\\2x^2+3x+1=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0,5\\x=-2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{0,5;-2,5;1;-2\right\}\)