Tính tổng A=21+22+23+24+…+22019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^3+2^4+...+2^{2019}\)
\(A=2A-A=1-2^{2019}\)
\(B-A=2^{2019}-\left(1-2^{2019}\right)\)
\(B-A=2^{2019}-1+2^{2019}\)
\(B-A=1\)
`#3107`
\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)
\(A=2^{2019}-1\)
Vậy, \(A=2^{2019}-1\)
Ta có:
\(B-A=2^{2019}-2^{2019}+1=1\)
Vậy, `B - A = 1.`
Tính các tổng sau một cách hợp lí:
a) 3784 + 23 – 3785 + 15;
b) 21 + 22 + 23 + 24 – 11 – 12 – 13 – 14.
a) 3784 + 23 - 3785 + 15
=3784+(23-15)
=3784+8
=3792
b)21 +22+23+24-11-12-13-14
=(21-11)+(22-12)+(23-13)+(24-14)
=10+10+10+10
=40
Đúng thì tick nha
a) 3807 - 3770
= 37
b) (21 + 14) - (22 + 13) - (23 + 12) - (24 + 11)
= 35 - 35 - 35 - 35
= 0
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
a) 3784 + 23 - 3785 -15
= (3785-3784)+(23-15)
=1+8=9
b) 21+22+23+24 -11 - 12 - 13 - 14
=(21-11)+(22-12)+(23-13) + (24-14)
=10+10+10+10=4*10=40
TICK NHA
Bạn Iamlaseala hơi nhầm một chút phải là ( 3784-3785) + ( 23 - 15)
= -1 + 8
= 7 nha mình nghĩ vậy đó vì lúc trước mình cũng lên mạng xem bài này nên người ta giải như vậy đó đều bằng 7 hết đó. Một chút sai lâm thui mà sai cả bài lun!!!
21 + 22 + 23 + 24 – 11 – 12 – 13 – 14
= (21 – 11) + (22 – 12) + (23 – 13) + (24 – 14)
= 10 + 10 + 10 + 10
= 40.
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211
2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)
G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210
G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)
G = 211 - 2
G = 2048 - 2 (đpcm)
b,
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)
Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)
=> 2A =2 + 22 + 23 + ... + 22020
=> 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)
=> A =22020-1
=> A+1 =22020
Vậy A + 1 là một số chính phương
A=21+22+23+24+…+22019
=> 2A = 22 + 23 + 24 + ...... + 22020
=> 2A - A = 22020 - 21
=> 2A = 22020 - 21
=> A = 22020 - 21 / 2
=(2mũ2020-1)/2