Cho tam giác ABC: ∠A= 90 độ, đường cao AH. HB= 9cm, HC= 16cm. Kẻ tiếp tuyến với đường tròn ngoại tiếp tam giác AHC tại H, cắt AB ở I.
a) Tính độ dài IH
b) AD là dây của đường tròn ngoại tiếp tam giác ABC và song song với BC. Tính AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thấy \(\widehat{HDC}=\widehat{HEC}=90^o\) nên CDHE là tứ giác nội tiếp đường tròn đường kính HC.
b. Ta thấy ngay \(\widehat{IAC}=\widehat{KBC}\) (Cùng phụ với góc ACB) nên \(\widebat{IC}=\widebat{KC}\) (Góc nội tiếp)
suy ra IC = KC ( Liên hệ giữa cung và dây)
Vậy nên tam giác IKC cân tại C.
c. Do \(\widebat{IC}=\widebat{KC}\) nên \(\widehat{KAC}=\widehat{ACI}\) (Góc nội tiếp)
Xét tam giác AHK có AE vừa là đường cao, vừa là phân giác nên AHK là tam giác cân tại A, hay AH = AK.
d. Ta thấy do BOF là đường kính nên \(\widehat{BCF}=90^o\Rightarrow\) AH // FC (Cùng vuông góc với BC).
Tương tự AF // HC vì cùng vuông góc với AB. Vậy thì AFCH là hình bình hành hay AC giao FH tại trung điểm mỗi đường.
P là trung điểm AC nên F cũng là trung điểm FH. Vậy F, H, P thẳng hàng.
Bài 2)
b) Do DE=BD nên tam giác BDE cân tại D nên ^DEB=^DBE
Tam giác OEH cân tại O nên ^OEH=^OHE=^BHD (đối đỉnh)
Do đó ^DEB+OEH=^DBE+BHD=90*
suy ra OE vuông góc với DE
nên DE là tiếp tuyến của (O)
câu c) Xét tam giác vuông OED có OE=AH/2=3cm, OD=OH+HD=5cm
nên theo Pitago thì DE^2=OD^2-OE^2=5^2-3^2=4^2 suy ra DE = 4cm
nhớ k mình nhé cảm ơn nhiều
Do tam giác ABC cân tại A nên AH là đường cao đồng thời là trung trực của BC
Mà tâm của đường tròn ngoại tiếp là giao của 3 đường trung trực hay tâm O nằm trên 3 đường trung trực
\(\Rightarrow O\in AH\)
Do AD là đường kính \(\Rightarrow\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\Delta ABD\) vuông tại B
Áp dụng hệ thức lượng:
\(AB^2=AH.AD\Rightarrow AD=\dfrac{AB^2}{AH}=7,2\left(cm\right)\)