K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!! 

0
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

0
21 tháng 12 2017

A C B M D N I K E

a) Xét tứ giác ABCD có M là trung điểm AC và M cũng là trung điểm BD nên ABCD là hình bình hành (dhnb)

b) Tứ giác ABCD là hình bình hành nên BA // CD và BA = CD.

Vậy nên AN cũng song song và bằng CD. Suy ra ANDC là hình bình hành.

Lại có \(\widehat{NAC}=90^o\) nên ANDC là hình chữ nhật.

c) Ta chứng minh bổ đề:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh NA = NC.

Chứng minh:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang). Vậy nên MF = NC (1)

Xét hai tam giác BMF và MAN, có: \(\widehat{MBF}=\widehat{AMN}\)  (hai góc đồng vị), BM = AM, \(\widehat{BMF}=\widehat{MAN}\) (hai góc đồng vị). 

\(\Rightarrow\Delta BMF=\Delta MAN\left(g-c-g\right)\Rightarrow MF=AN\left(2\right)\) 

Từ (1) và (2) suy ra NA = NC. Bổ đề được chứng minh.

Áp dụng bổ đề vào các tam giác AKC và BNI ta có: KI = IC; KI = BK

Vậy nên KC = 2BK.

d) Xét tam giác EBA và MNA có:

\(\widehat{EBA}=\widehat{MNA}\) (Hai góc so le trong)

AB chung 

\(\widehat{BAE}=\widehat{NAM}\left(=90^o\right)\)

\(\Rightarrow\Delta EBA=\Delta MNA\) (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow EB=MN\)

Vậy thì tứ giác EBMN là hình bình hành. Lại có \(EM\perp BN\) nên EBMN là hình thoi.

Để EBMN là hình vuông thì BN = EM hay AB = AM.

Do AC = 2AM nên tam giác ABC phải thỏa mãn: AC = 2AB thì EBMN là hình vuông.