tìm số nguyên n sao cho n^2/n+2 có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Để đây là số nguyên thì \(n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{2;0;3;-1\right\}\)
Để A nhận giá trị nguyên thì 2n+1n+22n+1n+2 nguyên
⇔2n+1⋮n+2⇔2n+1⋮n+2
⇒(2n+4)−4+1⋮n+2⇒(2n+4)−4+1⋮n+2
⇒2(n+2)−3⋮n+2⇒2(n+2)−3⋮n+2
2(n+2)⋮n+22(n+2)⋮n+2
⇒−3⋮n+2⇒−3⋮n+2
⇒n+2∈Ư(−3)⇒n+2∈Ư(−3)
⇒n+2∈{−1;−3;1;3}⇒n+2∈{−1;−3;1;3}
⇒n∈{−3;−5;−1;1}
Để \(\frac{8}{n+2}\)có giá trị nguyên thì \(8⋮n+2\Leftrightarrow n+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Lập bảng
n+2 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | -1 | -3 | 0 | -4 | 2 | -6 | 6 | -10 |
Vậy nếu \(n\in\left\{0;-1;-3;-4;2;-6;6;-10\right\}\)thì phân số \(\frac{8}{n+2}\)có giá trị nguyên.
Với n≠-2,n∈Z. Để 4/n+2 có giá trị là số nguyên thì 4⋮n+2
⇒n+2 ∈ Ư(4)={1;2;4;-1;-2;-4}
Nếu n+2=1⇒n=-1(TMĐK)
Nếu n+2=2⇒n=0(TMĐK)
Nếu n+2=4⇒n=2(TMĐK)
Nếu n+2=-1⇒n=-3(TMĐK)
Nếu n+2=-2⇒n=-4(TMĐK)
Nếu n+2=-4⇒n=-6(TMĐK)
Vậy với n ∈ {-1;0;2;-3;-4;-6} thì 4/n+2 có giá trị nguyên.
\(A=\frac{3n-2}{n+1}=\frac{3x+3-5}{n+1}=\frac{3.\left(x+1\right)-5}{n+1}=3+\frac{-5}{n+1}\)(ĐKXĐ:\(n\ne-1\))
Đề A nguyên thì \(3+\frac{-5}{n+1}\)nguyên
Có \(3\in Z\)nên để \(3+\frac{-5}{n+1}\)nguyên thì \(\frac{-5}{n+1}\)nguyên
Để \(\frac{-5}{n+1}\)nguyên thì \(-5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-5\right)\)
\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\)(Đều thỏa mãn ĐK)
Vậy......
Ta có\(\frac{n^2}{n+2}=n-2\)\(+\frac{4}{n+2}\)Mà n thuộc Z nên \(\frac{4}{n+2}\)thuộc Z =>n+2 thuộc Ư(4)
Từ đây bạn giải ra n