K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Ta có\(\frac{n^2}{n+2}=n-2\)\(+\frac{4}{n+2}\)Mà n thuộc Z nên \(\frac{4}{n+2}\)thuộc Z =>n+2 thuộc Ư(4)

Từ đây bạn giải ra n

6 tháng 3 2021

https://h7.net/hoi-dap/toan-6/tim-n-biet-1-2-3-n-la-so-chinh-phuong-faq291864.html

bạn tham khảo

2 tháng 9 2023

\(A=\left(n+5\right)^2-\left(n-6\right)^2\)

\(=\left(n+5-n+6\right)\left(n+5+n-6\right)\)

\(=11\left(2n-1\right)\)

Để \(A\) là số nguyên tố thì \(11\left(2n-1\right)\) là số nguyên tố

mà 11 là số nguyên tố \(\Rightarrow2n-1=1\Rightarrow n=1\left(tm\right)\) 

#\(Urushi\)

19 tháng 12 2018

\(A=\frac{n^3+n^2+3}{n+1}=n^2+\frac{3}{n+1}\)
Để A nguyên thì \(\left(n+1\right)\inƯ\left(3\right)\)
Đến đây tự giải 

19 tháng 12 2018

\(\frac{n^3+n^2+3}{n+1}=\frac{n\left(n+1\right)+3}{n+1}=\frac{n\left(n+1\right)}{n+1}+\frac{3}{n+1}\)

Vì \(n\left(n+1\right)⋮n+1\Rightarrow3⋮n+1\Rightarrow n+1\inƯ\left(3\right)\)

\(Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng sau:

n+1-3-1 3
n-4-202
KLLoạiLoạiChọnChọn

Vậy \(n\in\left\{0;2\right\}\)(tmđk)

_Học tốt_

28 tháng 10 2018

Đặt: \(A=\left(n^2+10\right)^2-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)

Vì \(n\in N\Rightarrow n^2+6n+10\ge10\)

Điều kiện cần để A là số nguyên tố:

     \(n^2-6n+10=1\)

\(\Rightarrow n^2-6n+9=0\)

\(\Rightarrow\left(n-3\right)^2=0\Rightarrow n=3\)

Ta phải thử lại:

\(A=\left(n^2+10\right)^2-36n^2=\left(3^2+10\right)^2-36.3^2=19^2-324=37\)

Vì 37 là số nguyên tố nên n = 3 thỏa mãn đề bài.

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)