(\(\frac{x+y}{x-2y}\)+\(\frac{3y}{2y-x}\)-3xy).\(\frac{x+1}{3xy-1}\)+\(\frac{x^2}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014
\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)
\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)
Ta phân tích mẫu:
\(x^3+2x^2y-xy^2-2y^3\)
\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)
\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)
\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)
Thay vào ta có:
\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)
Vậy ta có điều phải chứng minh
ĐKXĐ: ...
Nhận thấy \(x=0;y=0\) ko phải nghiệm của hệ
\(\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{x+1}{y}\right)\left(\frac{y+1}{x}\right)=4\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{x}{y+1}=a\\\frac{y}{x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=\frac{1}{2}\\\frac{1}{a}.\frac{1}{b}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=\frac{1}{2}\\ab=\frac{1}{4}\end{matrix}\right.\)
Hệ đơn giản rồi đấy, chắc bạn tự làm tiếp được
\(\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=\frac{1}{2}\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2=1\\ab=\frac{1}{4}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a+b=1\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow a=b=\frac{1}{2}\) (sử dụng Viet đảo hoặc phép thế \(a\left(1-a\right)=\frac{1}{4}\) đưa về pt bậc 2 bình thường)
TH2: \(\left\{{}\begin{matrix}a+b=-1\\ab=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow a=b=-\frac{1}{2}\)