K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)

\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)

\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`

\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)

\(=\frac{-x^2-2x-1+x^2}{x+1}\)

\(=\frac{-2x-1}{x+1}\)(1)

b) Thay \(x=-3,y=2014\)vào (1) ta được:

\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)

Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014

25 tháng 12 2016

\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)

\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)

25 tháng 12 2016

?????????

25 tháng 12 2016

Ta phân tích mẫu:

\(x^3+2x^2y-xy^2-2y^3\)

\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)

\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)

\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)

Thay vào ta có:

\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)

Vậy ta có điều phải chứng minh

25 tháng 12 2016

tks nha <3

26 tháng 9 2015

\(VP=\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)

\(=\frac{x.\left(x+y\right)+2y.\left(x+y\right)}{x.\left(x^2-y^2\right)+2y.\left(x^2-y^2\right)}=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}=VT\left(\text{điều phải chứng minh}\right)\)

4 tháng 12 2018

(x-6)(x+6)/2x+10 * -3(x-6)= 3x+18/2x+10

(x-3y)(x+3y)/x^2y^2* 3xy/2(x-3y)=3x+9y/2xy

3(x-y)(x+y)/5xy * -15x^2y/2(X-y)=-9x/2

5 tháng 12 2018

\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x+6\right)\left(x-6\right)}{2x+10}.\frac{3}{-x+6}.\)

\(=\frac{x-6}{2x+10}.\frac{3}{-1}=\frac{3x+18}{-2x-10}\)