Cho B = 3 + 3\(^3\)+ 3\(^5\)+............+ 3\(^{1991}\)
Giair nhanh hộ mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(b=\overline{x208y}⋮2;5\Rightarrow y=0\)
Ta có: \(b=\overline{x2080}\)
Để \(b⋮3\) thì \(\left(x+2+0+8+0\right)⋮3\Leftrightarrow\left(x+10\right)⋮3\Leftrightarrow x\in\left\{2;5;8\right\}\)
Vậy: ...
Đặt: \(A=1+3+3^2+3^3+...+3^{1991}\)
\(3A=3+3^2+3^3+...+3^{1992}\)
\(3A-A=3+3^2+3^3+...+3^{1992}-1-3-3^2-...-3^{1991}\)
\(2A=3^{1992}-1\)
\(A=\dfrac{3^{1992}-1}{2}\)
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
Ta có: B = 3 + 35 + 37 + .... + 31991
=> B = (3 + 35) + (37 + 311) + .... + (31987 + 31991)
=> B = 3.(1 + 34) + 37.(1 + 34) + ... + 31987.(1 + 34)
=> B = 3.82 + 37.82 + .... + 31987. 82
=> B = 82.(3 + 37 + ... + 31987) chia hết cho 41
Ta có: `B = 1 + 3 + 3^2 + ... + 3^1991`
`= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^1989 + 3^1990 + 3^1992)`
`= 13 + 3^3 (1 + 3 + 3^2) + ... + 3^1989 (1 + 3 + 3^2)`
`= 13 + 3^3 . 13 + ... + 3^1989 . 13`
`= 13 (1 + 3^3 + ... + 3^1989)`
Vì \(13\left(1+3^3+...+3^{1989}\right)⋮13\) nên \(B⋮13\)
`B = 1 + 3 + 3^2 + ... + 3^1991`
= (1 + 3^4) + (3 + 3^5) + ... + (3^1987 + 3^1991)`
`= 82 + 3 (1 + 3^4) + ... + 3^1987 (1 + 3^4)`
`= 82 + 3 . 82 + ... + 3^1987 . 82`
`= 82 (1 + 3 + ... + 3^1987)`
Vì \(82\left(1+3+...+3^{1987}\right)⋮41\) nên \(B⋮41\)
`C = 3 + 3^2 + 3^3 + ... + 3^1000`
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)
`= 120 + 3^4 (3 + 3^2 + 3^3 + 3^4) + ... + 3^996 (3 + 3^2 + 3^3 + 3^4)`
`= 120 + 3^4 . 120 + ... + 3^996 . 120`
`= 120 (1 + 3^4 + ... + 3^996)`
Vì \(120\left(1+3^4+...+3^{996}\right)⋮120\) nên \(C⋮120\)
Ta có: \(C=3+3^2+3^3+...+3^{1000}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)
\(=120\left(1+3^5+...+3^{997}\right)⋮120\)(đpcm)