Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
3k
3k +1 k E N
3k + 2 k E N
Sorry mày mình chỉ viết được thế thôi
Dạng tổng quát:
chia hết cho 3: 3K
chia cho dư 1 : 3K +1
chia cho 3 dư 2: 3K + 2
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
Vì chia hết cho cả 2 và 5 nên số đó có tận cùng là 0 nên ở ý a, số đó là 370
b, Để chia hết cho 5 thì phải có tận cùng là 0 hoặc 5, nhưng để chia hết cho cả 3 thì phải có tổng các chữ số chia hết cho 3. Như vậy số 28.. phải có tận cùng là 5 tức là số 285
a) 37.. chia hết cho cả 2 và 5
Ta thấy số tận cùng là 0;2;4;6;8 chia hết cho 2
số tận cùng là 0;5 chia hết cho 5
để 37.. chia hết cho 2 và 5 thì số đó phải tận cùng bằng 0
Vậy số đó là 370
b) 28.. chia hết cho 3 và 5
Để 28.. chia hết cho 5 thì số đó phải tận cùng là 0 và 5
TH1: Nếu số đó là 280
- 280 chia hết cho 5
- 280 k chia hết cho 3 (vì 2 + 8 +0 = 10 k chia hết cho 3)
=> k thỏa mãn
TH2: Nếu số đó là 285
- 285 chia hết cho 5
- 285 chia hết cho 3 (vì 2 + 8 +5 = 15 chia hết cho 3)
=> Thỏa mãn
Vậy số đó là 285
HOK TOT