Cho \(0\le a,b,c\le1\).
Tìm GTLN của: \(P=a+b^{2019}+c^{2020}-ab-bc-ac\)
@Akai Haruma
@Nguyễn Việt Lâm
Giúp em với sáng mai em thi HSG cấp huyện ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= a+b2019-ab+c(c2019-b-a) \(\le\) a + b2019 + 1.(12019 - b - a) =a + b2019 +1 - b - a = b(b2018 - 1) +1 \(\le\)1.(12018 - 1) +1 = 1
Vậy Max P=1
đạt được khi c=b=1; 0\(\le a\le1\)
(1-a)(1-b)(1-c)\(\ge\)0 <=> 1-a-b-c+ab+ac+dc-abc \(\ge\)0 <=> a+ b+ c- ab- ac- bc \(\le\)1-abc\(\le1\)(vì với a.b,c \(\ge0=>abc\ge0=>-abc\le0\))
\(b\le1=>b^{2019}\le b;c\le1=>c^{2020}\le c=>P\le a+b+c-ab-bc-ca\le1.\)
vậy GTLN của P là 1
đạt được khi (1-a)(1-b)(1-c)=0; abc=0; b=1; c=1 => a=0; b=c =1
Lời giải:
Do $a,b,c\in [0;1]$ nên $b^{2019}\leq b; c^{2020}\leq c$
$\Rightarrow P\leq a+b+c-ab-bc-ac$
Mặt khác, cũng vì $a,b,c\in [0;1]$ nên:
$(a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0$
$\Leftrightarow a+b+c-ab-bc-ac\leq 1-abc$
Mà $1-abc\leq 1$ do $a,b,c\geq 0$
Do đó $P\leq a+b+c-ab-bc-ac\leq 1$
Vậy $P_{\max}=1$. Giá trị này đạt được tại $(a,b,c)=(0,0,1)$ hoặc $(0,1,1)$ và các hoán vị của chúng.
Lời giải:
Do $a,b,c\in [0;1]$ nên $b^{2019}\leq b; c^{2020}\leq c$
$\Rightarrow P\leq a+b+c-ab-bc-ac$
Mặt khác, cũng vì $a,b,c\in [0;1]$ nên:
$(a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0$
$\Leftrightarow a+b+c-ab-bc-ac\leq 1-abc$
Mà $1-abc\leq 1$ do $a,b,c\geq 0$
Do đó $P\leq a+b+c-ab-bc-ac\leq 1$
Vậy $P_{\max}=1$. Giá trị này đạt được tại $(a,b,c)=(0,0,1)$ hoặc $(0,1,1)$ và các hoán vị của chúng.
Em có thể search trên mạng. Cô nghĩ là trên mạng sẽ có đề của các năm trước, có rất nhiều
Từ giả thiết ta có: (a+1)(b+1)(c+1) >=0 và (1-a)(1-b)(1-c) >=0
=> (a+1)(b+1)(c+1) +(1-a)(1-b)(1-c) >=0
Rút gọn ta có: -2((ab+bc+ca) =<2
Mặt khác (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0
=> a2+b2+c2=-2(ab+bc+ca)
=> a2+b2+c2 =<2
Dấu "=" xảy ra <=> a=0; b=1; c=-1
Lời giải:
a) Đặt \(AB=x; AC=y\)
Theo định lý Pitago: \(x^2+y^2=AB^2+AC^2=BC^2=25(1)\)
\(xy=AB.AC=2S_{ABC}=AH.BC=10(2)\)
Từ (1);(2) kết hợp với điều kiện $x<y$ ta dễ dàng tìm được \(AB=\sqrt{5}(cm)\)
b)
Kẻ $ID\perp HK$ ($D\in HK$)
Xét tam giác $IDK$ và $KHC$ có:
\(\widehat{IDK}=\widehat{KHC}=90^0\)
\(\widehat{IKD}=90^0-\widehat{HKC}=\widehat{KCH}\)
\(\Rightarrow \triangle IDK\sim \triangle KHC(g.g)\)
\(\Rightarrow \frac{ID}{DK}=\frac{KH}{HC}=\frac{2AH}{HC}\)
Theo hệ thức lượng trong tam giác vuông:
\(AH^2=BH.HC\Rightarrow \frac{AH}{HC}=\frac{BH}{AH}\)
Do đó: \(\frac{ID}{DK}=\frac{2BH}{AH}\Rightarrow \frac{BH}{ID}=\frac{AH}{2DK}(1)\)
Áp dụng định lý Ta-let khi \(BH\parallel ID\) ta có: \(\frac{BH}{ID}=\frac{AH}{AD}(2)\)
Từ \((1);(2)\Rightarrow 2DK=AD\)
\(\Leftrightarrow AD=2(HK-HD)=2HK-2HD=4AH-2HD\)
\(\Leftrightarrow AH+HD=4AH-2HD\)
\(\Leftrightarrow AH=HD\)
Áp dụng đl Ta-let \(\frac{AB}{BI}=\frac{AH}{HD}=1\Rightarrow AB=BI\)
Nguyễn Anh Kim Hân: xin lỗi bạn vì bây giờ mình mới có thời gian đọc bài của bạn. Hơi muộn nhưng chúc bạn thi đạt kết quả tốt.
Lời giải:
Vì $0\leq a,b,c\leq 1\Rightarrow b^{2019}\leq b; c^{2020}\leq c$
$\Rightarrow P\leq a+b+c-(ab+bc+ac)(1)$
Theo đề bài: $a,b,c\leq 1$
$\Rightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow a+b+c-(ab+bc+ac)\leq 1-abc$
Mà $abc\geq 0$ nên $a+b+c-(ab+bc+ac)\leq 1(2)$
Từ $(1);(2)\Rightarrow P\leq 1$
Vậy $P_{\max}=1$. Dấu "=" xảy ra khi $(a,b,c)=(0,1,1); (0,0,1)$ và các hoán vị.