K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

a) Xét 2 \(\Delta\) \(AIB\)\(CID\) có:

\(IB=ID\left(gt\right)\)

\(\widehat{AIB}=\widehat{CID}\) (vì 2 góc đối đỉnh)

\(AI=CI\) (vì I là trung điểm của \(AC\))

=> \(\Delta AIB=\Delta CID\left(c-g-c\right).\)

b) Xét 2 \(\Delta\) \(DIA\)\(BIC\) có:

\(DI=BI\left(gt\right)\)

\(\widehat{DIA}=\widehat{BIC}\) (vì 2 góc đối đỉnh)

\(IA=IC\) (như ở trên)

=> \(\Delta DIA=\Delta BIC\left(c-g-c\right)\)

=> \(AD=BC\) (2 cạnh tương ứng).

=> \(\widehat{IDA}=\widehat{IBC}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AD\) // \(BC.\)

c) Theo câu a) ta có \(\Delta AIB=\Delta CID.\)

=> \(\widehat{BAI}=\widehat{DCI}\) (2 góc tương ứng).

\(\widehat{BAI}=90^0\left(gt\right)\)

=> \(\widehat{DCI}=90^0.\)

=> \(DC\perp IC\)

Hay \(DC\perp AC\left(đpcm\right).\)

Chúc bạn học tốt!

11 tháng 12 2017

B A C D l

a, Xét t/g AIB và t/g CID có:

IA = IC (gt)

IB = ID (gt)

góc AIB = góc CID (đối đỉnh)

=> t/g AIB = t/g CID (c.g.c)

b, Xét t/g AID và t/g CIB có

IA =  IC (gt)

ID = IB (gt)

góc AID = góc CIB (đối đỉnh)

=> t/g AID = t/g CIB (c.g.c)

=> AD = BC ; góc IAD = góc ICB 

=> AD // BC (vì có 2 góc so le trong bằng nhau)

c, Vì t/g AIB = t/g CID (câu a) => góc IAB = góc ICD = 90 độ

=> DC _|_ AC

a) Xét ΔAIB và ΔCID có

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔAIB=ΔCID(c-g-c)

b) Xét ΔAID và ΔCIB có 

IA=IC(I là trung điểm của AC)

\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)

ID=IB(gt)

Do đó: ΔAID=ΔCIB(c-g-c)

Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)

mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

4 tháng 12 2021

a) Xét Δ AIB và Δ CID:

+ IB = ID (gt).

+ IA = IC (I là trung điểm của AC).

+ ^AIB = ^CID (2 góc đối đỉnh).

=> Δ AIB = Δ CID (c - g - c).

b) Xét tứ giác ABCD có:

+ I là trung điểm của AC (gt). 

+ I là trung điểm của BC (IB = ID).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AD = BC và AD // BC (Tính chất hình bình hành).

c) Xét tứ giác KABC có: 

+ E là trung điểm của AB (gt).

+ E là trung điểm của KC (EC = EK).

=> Tứ giác KABC là hình bình hành (dhnb).

=> KA // BC (Tính chất hình bình hành).

Mà AD // BC (cmt).

=> 3 điểm D, A, K thẳng hàng (đpcm).

a) Xét ΔABIΔABIvà ΔCIDΔCID ta có:
BI = DI (gt)
ˆAIBAIB^ = ˆCIDCID^ ( 2 góc đối đỉnh)
AI = CI (vì I là trung điểm của AC)
⇒ΔAIB=ΔCID⇒ΔAIB=ΔCID

b) Vì ΔAIB=ΔCIDΔAIB=ΔCID (c/m câu a)
⇒ˆICD=ˆBAI⇒ICD^=BAI^ (2 góc tương ứng)
Mà ˆBAI=90oBAI^=90o ⇒ˆICD=90o⇒ICD^=90o
⇒DC⊥AC

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

30 tháng 3 2016

Xét tam giácAIB và tam giác CID, có

AI=IC

AIB=CID

BI=ID

suy ra tam giác AIB=tam giacsCID(c-g-c)

b)Chứng minh như a,suy ra tam giac AID=tam Giác CIB

suy ra IAD=ICB mà 2 góc này ở vị trí so le trong suy ra điều phải chứng minh

11 tháng 12 2016

a) Xét tam giác AIB và tam giác IDC có:

Cạnh IA= cạnh IC( I là trung điểm của AC)

Cạnh IB = ID( gt)

Góc AIB = góc DIC ( hai góc đối đỉnh)

Do đó : Tam Giác,AIB=tam giác CID.

b) Ta có góc AID = góc CBD (ở vị trí so le trong)

Nên cạnh AC song song với BC

Hình Bạn Tự Vẽ Nha.