cho P= \(\left(\frac{2+x}{x-2}+\frac{2}{x+2}-\frac{x^2+5x}{x^2-4}\right):\left(1-\frac{x+1}{x+2}\right)\)
a. Rút gọn P
b. Tính P biết:\(x^2-2x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\)
\(=\dfrac{1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-2}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b: P=1/4
=>\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)
=>\(4\left(\sqrt{x}-2\right)=3\sqrt{x}\)
=>\(4\sqrt{x}-8-3\sqrt{x}=0\)
=>\(\sqrt{x}=8\)
=>x=64
c: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{\sqrt{4+2\sqrt{3}}-2}{3\cdot\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{2-\sqrt{3}}{3}\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
a) ĐK : \(x\ne1;x\ne2;x\ne3\)
\(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(\Leftrightarrow K=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(\Leftrightarrow K=\left(\frac{2x^2}{\left(x-1\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(\Leftrightarrow K=\frac{2x^2}{x^4+x^2+1}\)
a, \(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-2\right)}{x^4+x^2+1}\)
\(=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\left(\frac{x^2\left(x-1\right)+x^2\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\frac{x^3-x^2+x^3-3x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\frac{2x^3-4x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(=\frac{2x^3-4x^2}{\left(x-2\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2}{x^4+x^2+1}\)
a) ĐKXĐ: \(x\ne2\); x \(\ne\)-2
Ta có: P = \(\left(\frac{2+x}{x-2}+\frac{2}{x+3}-\frac{x^2+5x}{x^2-4}\right):\left(1-\frac{x+1}{x+2}\right)\)
P = \(\left(\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+5x}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x+2-x-1}{x+2}\right)\)
P = \(\left(\frac{x^2+4x+4+2x-4-x^2-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{1}{x+2}\)
P = \(\frac{x}{\left(x-2\right)\left(x+2\right)}\cdot\left(x+2\right)\)
P = \(\frac{x}{x-2}\) (đk: x khác 2)
b) Ta có: x2 - 2x = 0
=> x(x - 2) = 0
=> \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\left(tm\right)\\x=2\end{cases}}\)
Vì biểu thức P x \(\ne\)2 => x = 0=> P = \(\frac{0}{0-2}=0\)