\(\left\{{}\begin{matrix}x+y=2a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)
giá trị của a sao cho hệ có nghiệm (x;y)và x*y nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt(1) có nghiệm là 2 khoảng (-2;-1) và (1;2)
pt(2) có 2 nghiệm phân biệt là x=a+1 hay x=a-2
Để hệ có nghiệm duy nhất thì:
+ \(\left\{{}\begin{matrix}a-2< -2\\-2\le a+1\le-1\end{matrix}\right.\)
+ \(\left\{{}\begin{matrix}-2\le a-2\le-1\\a+1>-1\end{matrix}\right.\)
+ \(\left\{{}\begin{matrix}a-2< 1\\1\le a+1\le2\end{matrix}\right.\)
+ \(\left\{{}\begin{matrix}1\le a-2\le2\\a+1>2\end{matrix}\right.\)
Hợp nghiệm các trường hợp trên ta được:
\(-3\le a\le-2\) hay \(0\le a\le1\)hay \(3\le a\le4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\\left(x+y\right)^2-2xy=a^2+2a-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\2xy=\left(2a-1\right)^2-\left(a^2+2a-3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\xy=\frac{3a^2-6a+4}{2}\end{matrix}\right.\)
Hệ pt đã cho có nghiệm \(\Leftrightarrow\left(2a-1\right)^2\ge4\left(\frac{3a^2-6a+4}{2}\right)\)
\(\Leftrightarrow4a^2-4a+1\ge6a^2-12a+8\)
\(\Leftrightarrow2a^2-8a+7\le0\Rightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)
Khi đó: \(f\left(a\right)=xy=\frac{3a^2-6a+4}{2}=\frac{3}{2}a^2-3a+2\)
Xét \(f\left(a\right)\) trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)
\(\frac{3}{2}>0;\) \(\frac{3}{2.\frac{3}{2}}=1< \frac{4-\sqrt{2}}{2}\Rightarrow f\left(a\right)\) đồng biến trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)
\(\Rightarrow f\left(a\right)_{min}=f\left(\frac{4-\sqrt{2}}{2}\right)=\frac{11-6\sqrt{2}}{4}\)
Thay vào ta được
\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:
Nếu mình làm như này có đúng không bạn:
\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??
=>2x-2y=8 và 2x+3y=5m+3
=>-5y=8-5m-3=-5m+5 và x-y=4
=>y=m-1 và x=4+m-1=m+3
x^2+y^2-4=(m+3)^2+(m-1)^2-4
=m^2+6m+9+m^2-2m+1-4
=2m^2+4m+6
=2(m^2+2m+3)
=2(m^2+2m+1+2)
=2[(m+1)^2+2]>=4
=>A<=2019/4
Dấu = xảy ra khi m=-1
Xin lỗi bạn, mình mới học lớp 7 thôi!!
Hệ có nghiệm khi và khỉ khi \(m\ge\min\limits_{x^2+y^2=1}\left(x+y\sqrt{3}\right)\)
Ta có: \(\left(x.1+y.\sqrt{3}\right)^2\le\left(x^2+y^2\right)\left(1+3\right)=4\)
\(\Rightarrow-2\le x+y\sqrt{3}\le2\)
\(\Rightarrow\) Hệ có nghiệm khi và chỉ khi \(m\ge-2\)
\(\left\{{}\begin{matrix}x+y=2a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=\left(2a+1\right)^2\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2xy=4a^2+4a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-2a+3+2xy=4a^2+4a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{3a^2+6a-2}{2}\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)
\(xy=\frac{3a^2+6a-2}{2}=\frac{3}{2}\left(a^2+2a+1\right)-\frac{5}{2}=\frac{3}{2}\left(a+1\right)^2-\frac{5}{2}\ge-\frac{5}{2}\)
\(Min=-\frac{5}{2}\Leftrightarrow a+1=0\Leftrightarrow a=-1\)