K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

\(\left\{{}\begin{matrix}x+y=2a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=\left(2a+1\right)^2\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2xy=4a^2+4a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-2a+3+2xy=4a^2+4a+1\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{3a^2+6a-2}{2}\\x^2+y^2=a^2-2a+3\end{matrix}\right.\)

\(xy=\frac{3a^2+6a-2}{2}=\frac{3}{2}\left(a^2+2a+1\right)-\frac{5}{2}=\frac{3}{2}\left(a+1\right)^2-\frac{5}{2}\ge-\frac{5}{2}\)

\(Min=-\frac{5}{2}\Leftrightarrow a+1=0\Leftrightarrow a=-1\)

21 tháng 2 2021

pt(1) có nghiệm là 2 khoảng (-2;-1) và (1;2)

pt(2) có 2 nghiệm phân biệt là x=a+1 hay x=a-2

Để hệ có nghiệm duy nhất thì:

\(\left\{{}\begin{matrix}a-2< -2\\-2\le a+1\le-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2\le a-2\le-1\\a+1>-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a-2< 1\\1\le a+1\le2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1\le a-2\le2\\a+1>2\end{matrix}\right.\)

Hợp nghiệm các trường hợp trên ta được:

\(-3\le a\le-2\) hay \(0\le a\le1\)hay \(3\le a\le4\)

NV
15 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\\left(x+y\right)^2-2xy=a^2+2a-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\2xy=\left(2a-1\right)^2-\left(a^2+2a-3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2a-1\\xy=\frac{3a^2-6a+4}{2}\end{matrix}\right.\)

Hệ pt đã cho có nghiệm \(\Leftrightarrow\left(2a-1\right)^2\ge4\left(\frac{3a^2-6a+4}{2}\right)\)

\(\Leftrightarrow4a^2-4a+1\ge6a^2-12a+8\)

\(\Leftrightarrow2a^2-8a+7\le0\Rightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)

Khi đó: \(f\left(a\right)=xy=\frac{3a^2-6a+4}{2}=\frac{3}{2}a^2-3a+2\)

Xét \(f\left(a\right)\) trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)

\(\frac{3}{2}>0;\) \(\frac{3}{2.\frac{3}{2}}=1< \frac{4-\sqrt{2}}{2}\Rightarrow f\left(a\right)\) đồng biến trên \(\left[\frac{4-\sqrt{2}}{2};\frac{4+\sqrt{2}}{2}\right]\)

\(\Rightarrow f\left(a\right)_{min}=f\left(\frac{4-\sqrt{2}}{2}\right)=\frac{11-6\sqrt{2}}{4}\)

9 tháng 3 2022

Thay vào ta được 

\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

 

9 tháng 3 2022

Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:

Nếu mình làm như này có đúng không bạn:

\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??

=>2x-2y=8 và 2x+3y=5m+3

=>-5y=8-5m-3=-5m+5 và x-y=4

=>y=m-1 và x=4+m-1=m+3

x^2+y^2-4=(m+3)^2+(m-1)^2-4

=m^2+6m+9+m^2-2m+1-4

=2m^2+4m+6

=2(m^2+2m+3)

=2(m^2+2m+1+2)

=2[(m+1)^2+2]>=4

=>A<=2019/4

Dấu = xảy ra khi m=-1

14 tháng 2 2020
  • Nguyễn Lê Phước Thịnh20GP
  • Phạm Thị Diệu Huyền16GP
  • Vũ Minh Tuấn15GP
  • Phạm Lan Hương13GP
  • Trần Thanh Phương10GP
  • Trên con đường thành công không có dấu chân của kẻ lười biếng8GP
  • Phạm Minh Quang7GP
  • Chiyuki Fujito6GP
  • hellokoko6GP
  • Nguyễn Ngọc Lộc

Xin lỗi bạn, mình mới học lớp 7 thôi!!

NV
21 tháng 2 2021

Hệ có nghiệm khi và khỉ khi \(m\ge\min\limits_{x^2+y^2=1}\left(x+y\sqrt{3}\right)\)

Ta có: \(\left(x.1+y.\sqrt{3}\right)^2\le\left(x^2+y^2\right)\left(1+3\right)=4\)

\(\Rightarrow-2\le x+y\sqrt{3}\le2\)

\(\Rightarrow\) Hệ có nghiệm khi và chỉ khi \(m\ge-2\)

21 tháng 2 2021

tại sao phải là m>= min mà không phải mà max ạ