K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021
Vì AB=AC=>∆ABC là ∆ cân Vì ∆ABC là ∆ cân => GÓC B = GÓC C AH LÀ TIA PG CỦA GÓC A =>BAH=CAH XÉT ∆ABH và ∆ACH có AB=AC GÓC BAH= GÓC CAH Góc B= góc C Vậy ∆ABH=∆ACH(G-C-G) =>AHB=AHC(2 GÓC TƯƠNG ỨNG =NHAU) MÀ AHB+AHC=180°(2 GÓC KỀ BÙ) =>AHB=AHC=180°÷2=90° =>AH VUÔNG GÓC VỚI BC
15 tháng 5 2017

A B C H

a) Vì góc B bằng góc C (tam giác ABC cân tại A)

Và AB =AC

=> tam giác ABH bằng tam giác ACH (cạnh huyền góc nhọn)

b) Trong tam giác ABC cân tại A có AH là đường cao => AH đồng thời là đường phân giác => AH là p/g góc BAC

c) C/m AH là đường trung tuyến như câu b => HB = HC = 3cm

tam giác ABH vuông tại H => \(AH^2+BH^2=AB^2\) => \(AH^2+3^2=5^2\) =>AH = 4cm

đúng nha

15 tháng 5 2017

a, xét 2 tam giác ABH và ACH vuông tại H ta có:

AB=AC(gt),góc B=góc C từ đó suy ra nha!

b,trong tam giác cân dg cao vừa là dg phân giác trung trực, trung tuyến luôn nên ta suy ra AH là ............(đcpcm)

c, ta có BH=HC=BC/2=6/2=3

áp dụng đ/lí py-ta-go cho tam giác vuông ABH ta có

AB^2=AH^2+BH^2

suy ra: AH^2=AB^2-BH^2

                   =5^2- 3^2= 25-9 đến đây dễ lắm lun rồi đó bạn!!

24 tháng 2 2020
https://i.imgur.com/pDLmg6N.jpg
24 tháng 2 2020

Cạnh huyền - góc nhọn

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABH=ΔACH(cmt)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAH}=\widehat{NAH}\)

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH là cạnh chung

\(\widehat{MAH}=\widehat{NAH}\)(cmt)

Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)

⇒AM=AN(hai cạnh tương ứng)

c) Ta có: ΔAHB=ΔAHC(cmt)

⇒HB=HC(hai cạnh tương ứng)

Xét ΔBMH và ΔCNH có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)

Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)

d) Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(định nghĩa tam giác cân)

\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

\(\widehat{AMN}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)

e)

*Tính AB

Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)

Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=BH^2+AH^2\)

hay \(AB^2=6^2+8^2=100\)

\(AB=\sqrt{100}=10cm\)

Vậy: AB=10cm

8 tháng 4 2020

Thank you ^-^

8 tháng 9 2018

( hình vẽ và GTKL tự làm)

a) xét \(\Delta ABH\)\(\Delta ACH\)có :

\(AB=AC\)\(\left(GT\right)\)

\(BH=CH\left(GT\right)\)\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)

\(AH\)\(chung\)

b) Ta có  \(AHB=AHC\)( 2 góc tương ứng )

.Mà \(AHB+AHC=180\)O

\(\Rightarrow AHB=AHC=90\)O

\(\Rightarrow AH\perp BC\)

C) Xét 2 \(\Delta AHB\)\(KHC\)có :

\(BH=CH\)\(\left(GT\right)\)

\(KH=AH\left(GT\right)\)

\(BHA=CHK\)( ĐỐI ĐỈNH )

\(\Rightarrow\Delta AHB=\Delta KHC\left(c.g.c\right)\)

\(\Rightarrow ABH=KCH\)( 2 góc  tương ứng ) 

Mà 2 góc này so le trong

\(\Rightarrow CK//AB\)

14 tháng 3 2018

giải 

a, Xét \(\Delta ABH\)và \(\Delta ACH\)có :

\(\widehat{ABH}=\widehat{ACH}\)( Vì tam giác ABC cân tại A )

\(AH\)chung 

\(\widehat{AHB}=\widehat{ACH}=90^0\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(g.c.g\right)\)

b, Ta có  : Ax là tia phân giác của tam giác ABC cắt BC tại H , và cũng là đường cao 

=> AH vuông góc với BC

c, Ta có : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{6^2}=\frac{1}{18}\)

\(\Rightarrow AH^2=18\)

\(\Rightarrow AH=\sqrt{18}\)

14 tháng 3 2018

Thấy câu b sai sai rồi đó bạn @công chúa xinh xắn. Theo mk thì làm thế này nè :v

Ta có : 

Góc AHB = AHC ( T/g ABH = T/g ACH )

mà H1 = H( kb ) ( Gọi tắt cho lẹ )
=> H1 = H2 = 180o/2 = 90

=> Ah vuông góc với BC

12 tháng 12 2018

fhjiogn8lko0oklkoii

a: Xét ΔABH và ΔACH có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó ΔABH=ΔACH

Suy ra: HB=HC

hay H là trung điểm của BC

b: TA có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

c: Xét ΔADB và ΔBCA có 

AD=BC

\(\widehat{DAB}=\widehat{CBA}\)

BA chung

Do đó: ΔADB=ΔBCA

Xét tứ giác ADBC có

AD//BC

AD=BC

Do đó: ADBC là hình bình hành

Suy ra: AC//BD

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔAHB=ΔAHC

12 tháng 3 2023

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

 ➩ ΔAHB=ΔAHC (c-c-c)