Bài 2: Cho hình vẽ
A) Chứng minh \(\Delta ABH=\Delta ACH\)
B) Chứng minh \(AH\perp BC\)
C) Chứng minh AH là tia phân giác của <BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì góc B bằng góc C (tam giác ABC cân tại A)
Và AB =AC
=> tam giác ABH bằng tam giác ACH (cạnh huyền góc nhọn)
b) Trong tam giác ABC cân tại A có AH là đường cao => AH đồng thời là đường phân giác => AH là p/g góc BAC
c) C/m AH là đường trung tuyến như câu b => HB = HC = 3cm
tam giác ABH vuông tại H => \(AH^2+BH^2=AB^2\) => \(AH^2+3^2=5^2\) =>AH = 4cm
đúng nha
a, xét 2 tam giác ABH và ACH vuông tại H ta có:
AB=AC(gt),góc B=góc C từ đó suy ra nha!
b,trong tam giác cân dg cao vừa là dg phân giác trung trực, trung tuyến luôn nên ta suy ra AH là ............(đcpcm)
c, ta có BH=HC=BC/2=6/2=3
áp dụng đ/lí py-ta-go cho tam giác vuông ABH ta có
AB^2=AH^2+BH^2
suy ra: AH^2=AB^2-BH^2
=5^2- 3^2= 25-9 đến đây dễ lắm lun rồi đó bạn!!
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔABH=ΔACH(cmt)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAH}=\widehat{NAH}\)
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH là cạnh chung
\(\widehat{MAH}=\widehat{NAH}\)(cmt)
Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)
⇒AM=AN(hai cạnh tương ứng)
c) Ta có: ΔAHB=ΔAHC(cmt)
⇒HB=HC(hai cạnh tương ứng)
Xét ΔBMH và ΔCNH có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)
d) Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)
e)
*Tính AB
Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)
Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=BH^2+AH^2\)
hay \(AB^2=6^2+8^2=100\)
⇒\(AB=\sqrt{100}=10cm\)
Vậy: AB=10cm
( hình vẽ và GTKL tự làm)
a) xét \(\Delta ABH\)và\(\Delta ACH\)có :
\(AB=AC\)\(\left(GT\right)\)
\(BH=CH\left(GT\right)\)\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)
\(AH\)\(chung\)
b) Ta có \(AHB=AHC\)( 2 góc tương ứng )
.Mà \(AHB+AHC=180\)O
\(\Rightarrow AHB=AHC=90\)O
\(\Rightarrow AH\perp BC\)
C) Xét 2 \(\Delta AHB\)và\(KHC\)có :
\(BH=CH\)\(\left(GT\right)\)
\(KH=AH\left(GT\right)\)
\(BHA=CHK\)( ĐỐI ĐỈNH )
\(\Rightarrow\Delta AHB=\Delta KHC\left(c.g.c\right)\)
\(\Rightarrow ABH=KCH\)( 2 góc tương ứng )
Mà 2 góc này so le trong
\(\Rightarrow CK//AB\)
giải
a, Xét \(\Delta ABH\)và \(\Delta ACH\)có :
\(\widehat{ABH}=\widehat{ACH}\)( Vì tam giác ABC cân tại A )
\(AH\)chung
\(\widehat{AHB}=\widehat{ACH}=90^0\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(g.c.g\right)\)
b, Ta có : Ax là tia phân giác của tam giác ABC cắt BC tại H , và cũng là đường cao
=> AH vuông góc với BC
c, Ta có : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{6^2}=\frac{1}{18}\)
\(\Rightarrow AH^2=18\)
\(\Rightarrow AH=\sqrt{18}\)
Thấy câu b sai sai rồi đó bạn @công chúa xinh xắn. Theo mk thì làm thế này nè :v
Ta có :
Góc AHB = AHC ( T/g ABH = T/g ACH )
mà H1 = H2 ( kb ) ( Gọi tắt cho lẹ )
=> H1 = H2 = 180o/2 = 90
=> Ah vuông góc với BC
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó ΔABH=ΔACH
Suy ra: HB=HC
hay H là trung điểm của BC
b: TA có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Xét ΔADB và ΔBCA có
AD=BC
\(\widehat{DAB}=\widehat{CBA}\)
BA chung
Do đó: ΔADB=ΔBCA
Xét tứ giác ADBC có
AD//BC
AD=BC
Do đó: ADBC là hình bình hành
Suy ra: AC//BD
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC