Tìm a,b biết
\(\frac{a-b}{3}=\frac{a+b}{13}=\frac{ab}{20}\)
giúp mik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{52}{a-20}=\frac{39}{b-15}=\frac{13}{c-5}\)
\(\Rightarrow\frac{a-20}{52}=\frac{b-15}{39}=\frac{c-5}{13}\)
\(=\frac{a}{52}-\frac{20}{52}=\frac{b}{39}-\frac{15}{39}=\frac{c}{13}-\frac{5}{13}\)
\(=\frac{a}{52}-\frac{5}{13}=\frac{b}{39}-\frac{5}{13}=\frac{c}{13}-\frac{5}{13}\)
\(\Rightarrow\frac{a}{52}=\frac{b}{39}=\frac{c}{13}\)
\(\Rightarrow\frac{a^2}{52^2}=\frac{b^2}{39^2}=\frac{c^2}{13^2}=\frac{bc}{39.13}=\frac{3}{3.13.13}=\frac{1}{13^2}\)
\(\Rightarrow\begin{cases}a^2=\frac{1}{13^2}.52^2=4^2\\b^2=\frac{1}{13^2}.39^2=3^2\\c^2=\frac{1}{13^2}.13^2=1^2\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{3;-3\right\}\\c\in\left\{1;-1\right\}\end{cases}\)
Vậy giá trị (a;b;c) tương ứng thỏa mãn là: (4;3;1) ; (-4;-3;-1)
\(a,\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)< x< \left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}\)
\(taco:\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)=\frac{35}{36}\cdot\frac{-36}{35}=-1\)
\(\left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}=\frac{13}{8}\cdot\frac{8}{13}=1\)
\(=>x=0\)
\(b,\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}< x< \frac{-1}{2}+2+\frac{5}{2}\)(dau <co dau gach ngang o duoi nha)
\(taco:\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}=\frac{-5}{6}+\frac{8}{3}+\frac{-29}{3}=\frac{-5}{6}+\frac{16}{6}+\frac{-58}{6}=\frac{-47}{6}=-7,8\)
\(\frac{-1}{2}+2+\frac{5}{2}=\frac{3}{2}+\frac{5}{2}=4\)
tu do \(=>x=-7,8;...;0;1;2;3;4\)
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
\(N=\frac{4}{3}a-\left(\frac{1}{4}b+\frac{13}{12}b\right)\)
\(N=\frac{4}{3}a-\frac{4}{3}b\)
\(N=\frac{4}{3}\left(a-b\right)\)
\(N=\frac{4}{3}.\frac{3}{8}\)
\(N=\frac{1}{2}\)
\(\frac{a-b}{3}=\frac{a+b}{13}=\frac{a-b+a+b}{3+13}=\frac{2a}{16}=\frac{a}{8}=\frac{ab}{20}.\)
\(\Rightarrow\frac{a}{8}=\frac{ab}{20}\Rightarrow\frac{1}{8}=\frac{b}{20}\Rightarrow b=\frac{20}{8}=\frac{5}{2}\)
\(\Rightarrow\frac{a-b}{3}=\frac{a}{8}\) Thay \(b=\frac{5}{2}\Rightarrow a=4\)