K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

A B C D E M N O I 1 2 d

a) Ta có:  ^ECN=^ACB (Đối đỉnh). Mà tam giác ABC cân tại A => ^ACB=^ABC => ^ECN=^ABC hay ^ECN=^DBM.

Xét tam giác ECN và tam giác DBM có: 

^DMB=^ENC=900

CE=BD                     => Tam giác ECN=Tam giác DBM (Cạnh huyền góc nhọn)

^ECN=^DBM

=> CN=BM (2 cạnh tương ứng) => CN+MC=BM+MC (Cộng mỗi vế với MC) => MN=BC (đpcm)

Tam giác ECN=Tam giác DBM (cmt) => EN=DM (2 cạnh tương ứng)

DM và EN đều vuông góc với BC => DM//EN => ^MDI=^NEI (So le trong)

Xét tam giác DMI và tam giác ENI có:

^DMI=^ENI=900

DM=EN (cmt)      => Tam giác DMI=Tam giác ENI (g.c.g)

^NDI=^NEI

=> DI=EI => I là trung điểm của DE (đpcm)

b) AO là phân giác của ^BAC => ^A1=^A2.

Xét tam giác ABO và tam giác ACO có:

AB=AC

^A1=^A2         => Tam giác ABO=Tam giác ACO (c,g,c)

AO chung

=>  ^ABO=^ACO (2 góc tương ứng) (1)

Do tam giác ABC cân tại A và AO là đường phân giác => AO cũng là đương trung trực của tam giác ABC.

=> OB=OC (Tính chất đường trung trực của đoạn thẳng)

Ta có: Điểm O thuộc d, d là trung trực của DE => OD=OE

Xét tam giác DBO và tam giác ECO có:

OB=OC

BD=CE    => Tam giác DBO=Tam giác ECO (c.c.c)

OD=OE

=> ^DBO=^ECO (2 góc tương ứng) hay ^ABO=^ECO (2)

Từ (1) và (2) => ^ACO=^ECO. Mà 2 góc này là 2 góc kề bù => ^ACO=^ECO=900

=> OC vuông góc với AE hay OC vuông góc AC (đpcm).

22 tháng 12 2019

A G K I E B D C H  

Ta có:

\(AB=AC\)

\(\Rightarrow\Delta ABC\)là tam giác cân

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Do \(\widehat{ACB}\)và \(\widehat{KCE}\)là 2 góc đối đỉnh

\(\Rightarrow\widehat{ACB}=\widehat{KCE}\)

Xét \(\Delta BDH\)(vuông) và \(\Delta CEK\)(vuông) có:

    \(BD=CE\)

     \(\widehat{DBH}=\widehat{ECK}\left(=\widehat{ACB}\right)\)

\(\Rightarrow\Delta BDH=\Delta CEK\left(ch.gn\right)\)

\(\Rightarrow HD=EK\)

Ta có:

\(\widehat{DIH}=\widehat{KIE}\)(đối đỉnh)

\(\widehat{DHI}=\widehat{EKI}\)(=90O)

\(\Rightarrow\widehat{HDI}=\widehat{KEI}\)

Xét \(\Delta DHI\)và \(\Delta EKI\)có:

  \(\widehat{DHI}=\widehat{EKI}\)

   \(HD=EK\)

   \(\widehat{HDI}=\widehat{KEI}\)

\(\Rightarrow\Delta DHI=\Delta EKI\left(g.c.g\right)\)

\(\Rightarrow DI=IE\)

Do \(\hept{\begin{cases}DI< DE\\DI=IE\end{cases}}\)

Vậy I là trung điểm DE

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

A C B D E H K I 2 1

a, Ta có : \(\Delta\)ABC cân tại A (gt)

\(\Rightarrow\)Góc B = góc \(C_1\)

Mà góc \(C_1=C_2\)(đối đỉnh)

\(\Rightarrow\)Góc B = góc \(C_2\)

Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :

BD=CE (gt)

Góc B = góc C\(_2\)(cmt)

\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)

\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)

Vậy...

b, Ta có : DH và EK cùng vuông góc vs BC (gt)

\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)

\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )

Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :

DH=CE (\(\Delta BEH=\Delta CEK\))

Góc HDI = góc IEC (cmt)

\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)

\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )

Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )

\(\Rightarrow\)I là trung điểm của BC

Vậy...

Chúc bn hok tốt

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google