K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)

15 tháng 11 2023

Vũ™©®×÷|

5 tháng 5 2017

Đặt \(A=\frac{3-4a}{1+a^2}\)

Gọi k là một giá trị của A

=> \(A=\frac{3-4a}{a^2+1}=k\)

=> ka2 + k = 3 - 4a

<=> a2k + 4a + k - 3 = 0

<=> a2k2 + 4ak + k2 - 3k = 0 (cùng nhân cả 2 vế với k)

<=> (a2k2 + 4ak + 4) + (k2 - 3k - 4) = 0

Vì a2k2 + 4ak + 4 = (ak + 2)2 \(\ge\) 0 với mọi a, k

=> k2 - 3k - 4 \(\le\) 0

\(\Leftrightarrow\left(k+1\right)\left(k-4\right)\le0\)

\(\Leftrightarrow-1\le k\le4\)

Vậy GTNN của A là -1. Bài đầu trong ngày, hy vọng không sai ^_^

26 tháng 7 2018

ko bit

27 tháng 3 2020

a

Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

b

A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)

\(\Rightarrow\frac{5}{2n-1}\inℤ\)

\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)

c

\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)

7 tháng 4 2016

Ai đôn nâu

7 tháng 4 2016

\(\Leftrightarrow\frac{6n-1}{3n+2}=\frac{5}{4}\Rightarrow4\left(6n-1\right)=5\left(3n+2\right)\)

=>24n-4=15n+10

=>24n-15n=10+4

=>9n=14

=>n=\(\frac{14}{9}=1\frac{5}{9}\)

16 tháng 4 2020

A=\(\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

để A đạt GTLN thì \(\frac{3}{n+1}\)đạt GTLN

=> n+1 là số nguyên dương nhỏ nhất

=> n+1=1

=> n=0 (tmđk)

*)làm tương tự với TH nhỏ nhất

16 tháng 4 2020

\(A=\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

* Để A đạt GTLN => \(\frac{3}{n+1}\)có GTLN 

=> n + 1 = số nguyên dương nhỏ nhất

=> n + 1 = 1

=> n = 0

Với n = 0 => \(A=2+\frac{3}{0+1}=2+3=5\)

Vậy MaxA = 5 khi n = 0

* GTNN thì mình chịu nhé xD *