Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+9y^2-6xy-6x-12y+2036\)
\(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)
\(\Rightarrow A\ge2007\)
Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)
ĐK: `x-4>=0 <=>x>=4`
`\sqrt(x-4)>=0 forall x`
`<=>\sqrt(x-4)-2>=-2`
`=> (\sqrt(x-4)-2)_(min) =-2<=> x=4`
P=(√x+3√x+2+4x√x+3x+9x−√x−6):(√x√x+3+2√x+3x+5√x+6)
=[(√x+3)(√x−3)(√x+2)(√x−3)+4x√x+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]
=x−9+4x√x+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)
=4x√x+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)
=4x(√x+1)(√x−3)(√x+1)=4x√x−3
b/ P=48⇔4x√x−3=48
⇔4x=48√x−144
⇔4x−48√x+144=0
⇔(2√x−12)2=0
⇔2√x−12=0⇔√x=6⇔x=36(TM)
Vậy................
Đặt \(A=\frac{3-4a}{1+a^2}\)
Gọi k là một giá trị của A
=> \(A=\frac{3-4a}{a^2+1}=k\)
=> ka2 + k = 3 - 4a
<=> a2k + 4a + k - 3 = 0
<=> a2k2 + 4ak + k2 - 3k = 0 (cùng nhân cả 2 vế với k)
<=> (a2k2 + 4ak + 4) + (k2 - 3k - 4) = 0
Vì a2k2 + 4ak + 4 = (ak + 2)2 \(\ge\) 0 với mọi a, k
=> k2 - 3k - 4 \(\le\) 0
\(\Leftrightarrow\left(k+1\right)\left(k-4\right)\le0\)
\(\Leftrightarrow-1\le k\le4\)
Vậy GTNN của A là -1. Bài đầu trong ngày, hy vọng không sai ^_^