so sánh:
\(3^{203}\) và \(2^{302}\)
giúp mình nhaa mn :3 thankss nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{203}\) và \(2^{302}\)
Ta có:
\(3^{203}>3^{202}=\left(3^2\right)^{101}=9^{101}.\)
\(2^{302}< 2^{303}=\left(2^3\right)^{101}=8^{101}.\)
Vì \(9>8\) nên \(9^{101}>8^{101}.\)
\(\Rightarrow3^{203}>2^{302}.\)
Chúc bạn học tốt!
3203=3200.33=(32)100.27=9100.27
2302=2300.22=(23)100.4=8100.4
Vì 9100>8100
Và 27>4
=> 9100.27>8100.4
=>3203>2302
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Phương Quyên
Ta thấy: 2^302 < 2^303= 2^3.101= (2^3)^101= 8^101
3^203 > 3^202= 3^2.101= (3^2)^101= 9^101
Vì 8^101 < 9^101 nên 2^302 < 3^203
ta có: 2333 = (23)111 = 8111
3222 =(32)111 = 9111
=> ....
TC \(2^{333}=\)\(2^{3.111}\)\(\left(2^3\right)^{111}=8^{111}\)
LC \(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
MÀ 8<9
\(\Rightarrow8^{111}< 9^{111}\)
\(hay\)\(2^{333}< 3^{222}\)
\(3^{203}=3^{200}.3^3=9^{100}.27\)
\(2^{302}=2^{300}.2^2=8^{100}.4\)
Vì \(9^{100}>8^{100}\); \(27>4\)\(\Rightarrow3^{203}>2^{302}\)
\(3^{203}>3^{202}=\left(3^2\right)^{101}=9^{101}\)
\(2^{302}< 2^{303}=\left(2^3\right)^{101}=8^{101}\)
\(\Rightarrow2^{302}< 8^{101}< 9^{101}< 3^{203}\)