K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

a)

`64^150` và `4^450`

Ta có:

`64^150 = (4^3)^150 = 4^(3*150) = 4^450`

Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`

Vậy, `64^150 = 4^450`

b)

`81^64` và `27^100`

Ta có:

`81^64 = (3^4)^64 = 3^(4*64) = 3^256`

`27^100 = (3^3)^100 = 3^(3*100) = 3^300`

Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`

Vậy, `81^64 < 27^100`

c)

`125^1000` và `25^3000`

Ta có:

`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`

Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`

Vậy, `125^1000 < 25^3000`

d)

`4^30` và `3^40`

Ta có:

`4^30 = 4^(3*10) = (4^3)^10 = 64^10`

`3^40 = 3^(4*10) = (3^4)^10 = 81^10`

Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`

Vậy, `4^30 < 3^40`

m)

`2^5000` và `5^2000`

Ta có:

`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`

`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`

Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`

Vậy, `2^5000 > 5^2000`

h)

`6^450` và `3^750`

Ta có:

`6^450 = 6^(150*3) = (6^3)^150 = 216^150`

`3^750 = 3^(150*5) = (3^5)^150 = 243^150`

Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`

Vậy, `6^450 < 3^750`

0)

`333^444` và `444^333`

Ta có:

`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`

`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`

Vì `81 > 64;` `111^444 > 111^333`

`=> 81^111 * 111^444 > 64^111 * 111^333`

Vậy, `333^444 > 444^333.`

6 tháng 10 2023

a) Ta có:

\(64^{150}=\left(2^6\right)^{150}=2^{900}\)

\(4^{450}=\left(2^2\right)^{450}=2^{900}\)

Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)

b) Ta có:

\(81^{64}=\left(3^4\right)^{64}=3^{256}\)

\(27^{100}=\left(3^3\right)^{100}=3^{300}\)

Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)

c) Ta có: 

\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)

Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)

d) Ta có:

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

\(3^{40}=\left(3^4\right)^{10}=81^{10}\)

Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)

m) Ta có:

\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)

\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)

Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)

h) Ta có:

\(6^{450}=\left(6^3\right)^{150}=216^{150}\)

\(3^{750}=\left(3^5\right)^{150}=243^{150}\)

Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)

.... 

10 tháng 9 2023

a) Ta có:

\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)

Mà: \(8< 9\)

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) Ta có:

\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)

Mà: \(243< 343\)

\(\Rightarrow243^{100}< 343^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

c) Ta có: 

\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)

\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)

Mà: \(2< 3\)

\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)

\(\Rightarrow8^5< 3\cdot4^7\)

d) Ta có:

\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)

\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)

Mà: \(8242408>91809\)

\(\Rightarrow8242408^{101}>91809^{101}\)

\(\Rightarrow202^{303}>303^{202}\)

19 tháng 9 2016

a) 5^23 và 6 . 5^22

Ta có: 5^23 = 5^22 . 5

Vì 5 < 6 nên 5^23 < 6 . 5^22

b) 7 . 2^13 và 2^16

Ta có: 2^16 = 2^13 . 2^3 = 2^13 . 8

Vì 7 < 8 nên 7 . 2^13 < 2^16

c) 21^15 và 27^5 . 49^8

Ta có: 21^15 = (3.7)^15 = 3^15 . 7^15

27^5 . 49^8 = (3^3)^5 . (7^2)^8 = 3^15 . 7^16

Vì 7^15 < 7^16 nên 21^15 < 27^5 . 49^8

27 tháng 3 2023

f

12 tháng 11 2017

a,5mũ 36=(5mũ3)mũ12=125 mũ12

11^24=(11^2)12=121^12

vì 121<125 nên 5^36>11^24

14 tháng 11 2017

cảm ơn nha

1 tháng 11 2018

a) \(3^{26}=\left(3^2\right)^{13}=9^{13}\)

\(2^{39}=\left(2^3\right)^{13}=8^{13}\)

Vì \(9^{13}>8^{13}\Rightarrow3^{26}=2^{39}\)

1 tháng 11 2018

Sửa = thành > nha 

Mình đánh máy nên bị nhầm 

:p

9 tháng 7 2017

a)\(27^2\)và \(4^6\)

\(27^2=\left(3^3\right)^2\)

\(4^6=\left(2^3\right)^2\)

\(3^3>2^3\)

b) \(3^{500}=\left(3^5\right)^{100}\)

\(7^{300}=\left(7^3\right)^{100}\)

\(7^3=343\)

\(3^5=243\)

\(\Rightarrow3^{500}< 7^{300}\)

c) \(8^5=4^5\cdot2^5\)

\(3\cdot4^7=3\cdot4^2\cdot4^5\)

\(3\cdot4^2>2^5\)

\(3\cdot4\cdot4=2\cdot2\cdot2\cdot2\cdot3>2\cdot2\cdot2\cdot2\cdot2\)

\(8^5< 3\cdot4^7\)

9 tháng 7 2017

d) \(202^{303}=\left(202^3\right)^{101}\)

\(303^{202}=\left(303^2\right)^{101}\)

\(202^3>303^2\)

Nên

GH
6 tháng 8 2023

Bài 1: 

a) 02002 < 02023

 

b) 20220 = 20230

 

c) 549 < 5510

d) ( 4 + 5 )3 > 4+ 52

đ) 92 - 32 > ( 9 - 3 )2

Bài 2:

a) 32 x 43 - 32 + 333

= 9 x 64 - 9 + 333

= 576 - 9 + 333

= 567 + 333

= 900

b) 5 x 43 + 24 x 5 + 410

= 5 x 64 + 24 x 5 + 1

= 5 x ( 64 + 24 ) + 1

= 5 x 88 + 1

= 440 + 1

= 441

c) 23 x 42 + 32 x 5 - 40 x 12023

= 8 x 16 + 9 x 5 - 40 x 1

= 128 + 45 - 40

= 133

6 tháng 8 2023

Bài 1 :

a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)

b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)

c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)

d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)

đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)

26 tháng 12 2016

a/ \(27^{11}=\left(3^3\right)^{11}=3^{33}\)\(81^8=\left(3^4\right)^8=3^{32}< 3^{33}\Rightarrow81^8< 27^{11}\)

b/ \(3^{2n}=\left(3^2\right)^n=9^n\)\(2^{3n}=\left(2^3\right)^n=8^n< 9^n\Rightarrow2^{3n}< 3^{2n}\)

26 tháng 6 2018

a. 2711= (33)11 = 333

    818 = (34)8 = 332

Suy ra 333>332 hay 2711>818

b. 32n = (32)n = 9n

     23n = (23)n = 8n

Mà 9>8 suy ra 9n>8n hay 32n>23n

c. 523 = 522 . 5

   (6.5)22 = 622 . 522

Vì 622>5 suy ra 522 . 5<622 . 522 hay 523<(6.5)22

d. 7245-7244 = 7244(72-1) = 7244 . 71

    7244-7243 = 7243(72-1) = 7243 . 71

Vì 7244>7243 suy ra 7244 . 71>7243 . 71 hay 7245-7244>7244-7243