K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

Tiếp tục 1 câu hỏi sai, có thể cả 4 mệnh đề đều đúng, không mệnh đề nào sai cả

Ví dụ:

\(f\left(x\right)=x^2-x+1\) thỏa mãn \(f\left(x\right)>0\) ; \(\forall x\)

Nhưng:

\(a+b+c=1>0\) (mệnh đề A đúng)

\(5a-b+2c=8>0\) (mệnh đề B đúng)

\(10c-2b+2c=14>0\) (mệnh đề C đúng)

\(11a-3b+5c=19>0\) (mệnh đề D cũng đúng luôn)

5 tháng 3 2018

từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)

tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)

cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)

\("="\)khi a=b=c=....

hic :( tự đăng rồi tự giải ra luôn :(((  sorry mn

9 tháng 11 2018

Dùng delta đi

9 tháng 11 2018

giải giúp mk đi Mashiro Shiina

9 tháng 3 2016

GTLN = \(\frac{\sqrt{3}}{2}\)

11 tháng 7 2018

Ad BĐT Cauchy cho 6 số: 

\(\frac{a^3b}{c}+\frac{a^3c}{b}+\frac{b^3c}{a}+\frac{b^3a}{c}+\frac{c^3a}{b}+\frac{c^3b}{a}\ge6\sqrt[6]{\frac{a^8b^8c^8}{a^2b^2c^2}}=6abc\)

Dấu = xr khi a=b=c

13 tháng 10 2020

Áp dụng bất đẳng thức Cauchy cho VT ta được :

\(VT\ge6\sqrt[6]{\frac{a^3b}{c}\cdot\frac{a^3c}{b}\cdot\frac{b^3c}{a}\cdot\frac{b^3a}{c}\cdot\frac{c^3a}{b}\cdot\frac{c^3b}{a}}=6\sqrt[6]{\frac{a^8b^8c^8}{a^2b^2c^2}}=6\sqrt[6]{a^6b^6c^6}=6abc=VP\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c

\(\)

1 tháng 5 2017

bài này ko khác gì câu 921427 nhé bạn, có điều bạn tìm cách tách a + 3b + 2c = (a + b) + (b + c) + (b + c)

Thêm nữa, áp dụng BĐT   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)  với a, b, c > 0

Đẳng thức xảy ra khi và chỉ khi a = b = c.

20 tháng 2 2020

EZ!!!Sau khi sử dụng 1 số bđt đơn giản, ta sẽ được:

\(\text{Σ}_{cyc}\frac{ab}{a+3b+2c}\le\frac{1}{9}\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=K\)

\(P\le K=\frac{1}{9}\left[\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{a+b+c}{2}\right]\)

\(=\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2