Cho số tự nhiên \(a_n=3n^2+6n+13\) với \(n\in N\) . Tìm các số tự nhiên n lẻ sao cho \(a_n\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Lời giải:
Ta thấy: \(a_n=3n^2+6n+13=3(n^2+2n+1)+10\)
\(=3(n+1)^2+10\)
Một số chính phương chia $5$ có thể dư $0,1,4$.
Do đó \((n+1)^2\equiv 1, 4\pmod 5\)
\(\Rightarrow a_n\equiv 3(n+1)^2+10\equiv 13, 22, 10\pmod 5\)
\(\Leftrightarrow a_n\equiv 2,3,0\pmod 5\)
Với \(a_n\not\vdots 5\Rightarrow a_n\equiv 2,3\pmod 5\)
Vậy $a_i,a_j$ không chia hết cho $5$ và có số dư khác nhau khi chia cho $5$ sẽ có một số dư $2$ và một số dư $3$
\(\Rightarrow a_i+a_j\equiv 2+3\equiv 5\equiv 0\pmod 5\)
Tức là $a_i+a_j$ chia hết cho $5$
Ta có đpcm.
b)
Theo phần a, \(a_n=3(n+1)^2+10\equiv 2,3,0\pmod 5\)
Nếu $a_n$ là một số chính phương thì \(a_n\equiv 0\pmod 5\) do số chính phương chia $5$ chỉ dư $0,1,4$
\(\Leftrightarrow 3(n+1)^2+10\vdots 5\)
\(\Leftrightarrow 3(n+1)^2\vdots 5\)
\(\Leftrightarrow (n+1)^2\vdots 5\Rightarrow n+1\vdots 5\) (do 5 là số nguyên tố)
\(\Rightarrow (n+1)^2\vdots 25\)
Do đó $a_n=3(n+1)^2+10$ là một số chia hết cho $5$ nhưng không chia hết cho $25$, suy ra $a_n$ không thể là số chính phương.
a) Ta có: \(2018^n-1964^n⋮3\)
\(2032^n-1984^n⋮3\)
nên An chia hết cho 3
Mà \(2018^n-1984^n⋮17\)
\(2032^n-1964^n⋮17\)
nên An chia hết cho 17
Vậy A chia hết cho 51
b) Ta có: An đồng dư 3^n +2^n-2.4^n (mod5)
và An đồng dư 2^n + 7^n -2^n-4^n (mod9)
Vậy An chia hết cho 45 khi n có dạng 12k
Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)
*Chứng minh an là số tự nhiên.
Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:
\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n = k + 1 hay:
\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)
\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)
Vậy ta có đpcm.
Còn lại em chưa nghĩ ra