Cho \(x.y.z\)nguyên dương và \(2^x-1=y^z\left(x>1\right)\). C/m \(z=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)
\(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)
\(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3)
Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)
Áp dụng BĐT Cauchy cho 3 số ta có :
\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)
\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)
Đẳng thức xảy ra <=> x = y = z = 1
\(29xyz=\left(x+y+z\right)^3+x^2+y^2+z^2+4\ge27xyz+3\sqrt[3]{\left(xyz\right)^2}+4\)
\(\Leftrightarrow2xyz-3\sqrt[3]{\left(xyz\right)^2}-4\ge0\)
Đặt \(\sqrt[3]{xyz}=t>0\Rightarrow2t^3-3t^2+4\ge0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+t+2\right)\ge0\)
\(\Leftrightarrow t\ge2\Leftrightarrow xyz\ge8\)
\(\Rightarrow xyz_{min}=8\) khi \(x=y=z=2\)
\(P=\sum\frac{x^2\left(y+z\right)}{yz}\ge\sum\frac{4x^2\left(y+z\right)}{\left(y+z\right)^2}=\sum\frac{4x^2}{y+z}\ge\frac{4\left(x+y+z\right)^2}{y+z+z+x+x+y}=2\left(x+y+z\right)=2\)
\(P_{min}=2\) khi \(x=y=z=\frac{1}{3}\)
Câu 2 có dương không nhỉ? Không dương thì không làm được
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}=\frac{6}{\left(x+y\right)^2}\ge6\)
\(A_{min}=6\) khi \(x=y=\frac{1}{2}\)
1) \(P\ge\frac{x^2.2\sqrt{yz}}{yz}+\frac{y^2.2\sqrt{zx}}{zx}+\frac{z^2.2\sqrt{xy}}{xy}=\frac{2x^2}{\sqrt{yz}}+\frac{2y^2}{\sqrt{zx}}+\frac{2z^2}{\sqrt{xy}}\ge4\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=4\left\{\left[\frac{x^2}{y+z}+\frac{1}{4}\left(y+z\right)\right]+\left[\frac{y^2}{z+x}+\frac{1}{4}\left(z+x\right)\right]+\left[\frac{z^2}{x+y}+\frac{1}{4}\left(x+y\right)\right]\right\}-2\left(x+y+z\right)\ge4\left(x+y+z\right)-2\left(x+y+z\right)=2\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)
2) \(A=\left[\frac{1}{x^2+y^2}+4\left(x^2+y^2\right)\right]+\left(\frac{1}{xy}+16xy\right)-4\left(x+y\right)^2-8xy\ge4+8-4-2.\left(x+y\right)^2=8-2.\left(x+y\right)^2\ge8-2=6\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)
Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)
\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)