K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

A=/x+2017/+/x+2019/

A=/x+2017/+/-2019-x/

A=/x+2017-2019-x/\(\le2\)

gtnn của a =2

dấu = xảy ra <=>(x+2017).(-2019-x)

rồi chia Th ra rồi xét thôi bạn

11 tháng 3 2022

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

16 tháng 3 2020

\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow A\ge17,5\)

Dấu "=" xảy ra  \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)

\(=\left|x-2\right|+\left|6-x\right|+2017\)

Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)

\(\Rightarrow B\ge4+2017=2021\)

Dấu "=" xảy ra khi \(2\le x\le6\)

....

\(C=\left(2x+1\right)^{2020}-2019\)

Ta thấy \(\left(2x+1\right)^{2020}\ge0\)

\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)

Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

....

29 tháng 10 2019

A = | x - 2015 | +| x - 2016 | 

A = | x - 2015 | + | 2016 - x | 

A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |

A = | x - 2015 | + | 2016 - x | \(\ge\)1

Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0

                       \(\Rightarrow\)x = 2015 hoặc x = 2016

Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016

29 tháng 10 2019

Bạn làm đc câu b ko

20 tháng 10 2018

Để A có giá trị nhỏ nhất thì A = 1 ; 0 

=> x thuộc ( 2018 hoặc 2017)

20 tháng 10 2018

\(A=\left(x-2017\right)^{2018}+2019\)

Ta có: \(\left(x-2017\right)^{2018}\ge0\forall x\)

\(\Rightarrow\left(x-2017\right)^{2018}+2019\ge2019\forall x\)

\(A=2019\Leftrightarrow\left(x-2017\right)^{2018}=0\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)

\(A_{min}=2019\Leftrightarrow x=2017\)

5 tháng 4 2018

Ta có : 

\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)

\(\Rightarrow\)\(2017\le x\le2019\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại ) 

Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)

Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)

\(\Leftrightarrow\)\(x-2018=0\)

\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) ) 

Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)

Chúc bạn học tốt ~ 

5 tháng 4 2018

thanks bn nha