K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

Ta có : 

\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)

\(\Rightarrow\)\(2017\le x\le2019\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại ) 

Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)

Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)

\(\Leftrightarrow\)\(x-2018=0\)

\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) ) 

Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)

Chúc bạn học tốt ~ 

5 tháng 4 2018

thanks bn nha

8 tháng 4 2018

TH1: với n<2018 ta có : 

\(2^m+2017=-\left(n-2018\right)+\left(n-2018\right)=0\)

=> Không thể xảy ra vì \(2^m+2017>0\) Vì m là số tự nhiên 

TH2 : với \(n\ge2018\)

=> \(2^m+2017=n-2018+n-2018=2\left(n-2018\right)\)

Ta có : Vế trái  \(2^m+2017\) là số tựi nhiên lẻ => ko chia hết cho 2 

Mà Vế phải 2(n-2018) luôn chia hết cho 2 

=> Vô lí . Vậy pt vô nghiệm và m,n ko tồn tại 

8 tháng 4 2018

thanks bn nha

5 tháng 3 2018

\(M=\left|3x+1\right|+3x-49\)

\(M=\left|-3x-1\right|+3x-49\ge-3x-1+3x-49\)

\(M\ge-50\)

\(N=\left|x-7\right|+x-20=\left|7-x\right|+x-20\)

\(N\ge7-x+x-20=-13\)

\(C=\left|2x+5\right|+\left|x-1\right|+\left|2x-35\right|\)

\(C=\left|2x+5\right|+\left|35-2x\right|+\left|x-1\right|\)

\(C\ge\left|2x+5+35-2x\right|+\left|x-1\right|=40+\left|x-1\right|\ge40\)

1 tháng 12 2017
A)x=(7;6;5;4;3;2;1;0;-1;-2;-3;-4;-5;-6;-7)
1 tháng 4 2018

Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)

=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)

Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)

Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2

\(a)2018=\left|x-2016\right|+\left|x-2014\right|\)

\(\Rightarrow\hept{\begin{cases}x-2016+x-2014=2018\\x-2016+x-2014=-2018\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-2016-2014=2018\\2x-2016-2014=-2018\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=2018+2016+2014\\2x=-2018+2016+2014\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=6048\\2x=2012\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3024\\x=1006\end{cases}}\)

vậy x = 3024 hoặc x = 1006

b) \(\left(x-3\right)^x-\left(x-3\right)^{x+2}=0\)

\(\Rightarrow\left(x-3\right)^x-\left(x-3\right)^x\left(x-3\right)^2=0\)

\(\Rightarrow\left(x-3\right)^x\left[1-\left(x-3\right)^2\right]=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^x=0\\1-\left(x-3\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-3=0\\\left(x-3\right)^2=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\\left(x-3\right)^2=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\x-3=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\x=4\end{cases}}\)

vậy x = 3 hoặc x = 4

30 tháng 3 2018

Thanks bn nhé Chử Văn Dũng

11 tháng 2 2020
https://i.imgur.com/ZLOzZOI.png
11 tháng 2 2020

Cop thì ghi cái nguồn ra không thì đưa cái link cho người ta.

Nguồn: Câu hỏi của Tran Thi Minh Thu - Toán lớp 7 | Học trực tuyến