K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

\(\text{Đ}\text{ặt}:\frac{x}{3}=\frac{y}{6}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=6k\end{cases}}\)

\(xy=162\)

\(\Rightarrow3k.6k=162\)

\(18k^2=162\)

\(k^2=9\)

\(k=\pm3\)

\(\Rightarrow\hept{\begin{cases}x=\pm9\\y=\pm18\end{cases}}\)

10 tháng 5 2023

a/Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{x+y}{3+6}=\dfrac{90}{9}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\cdot3=30\\y=10\cdot6=60\end{matrix}\right.\)
Vậy ...
b/Ta có:
\(\dfrac{x}{3}=\dfrac{4x}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{4x}{12}=\dfrac{y}{6}=\dfrac{4x-y}{12-6}=\dfrac{42}{6}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7\cdot3=21\\y=7\cdot6=42\end{matrix}\right.\)
Vậy ...
c/Đặt \(x=k;y=k\) ( k \(\in\) N* )
\(\Rightarrow x=3k;=6k\)
Mà \(xy=162\)
\(\Rightarrow3k\cdot6k=162\)
\(\Rightarrow18k^2=162\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\x=\left(-3\right)\cdot3=-9\\y=3\cdot6=18\\y=\left(-3\right)\cdot6=-18\end{matrix}\right.\)
Vậy ...
#NoSimp  

21 tháng 8 2018

a,

\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)

\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)

21 tháng 8 2018

b,

\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)

30 tháng 9 2019

i) Ta có: \(\frac{x}{3}=\frac{y}{6}.\)

=> \(\frac{x}{3}=\frac{y}{6}\)\(x+y=90.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{3}=\frac{y}{6}=\frac{x+y}{3+6}=\frac{90}{9}=10.\)

\(\left\{{}\begin{matrix}\frac{x}{3}=10\Rightarrow x=10.3=30\\\frac{y}{6}=10\Rightarrow y=10.6=60\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(30;60\right).\)

ii) Ta có: \(\frac{x}{3}=\frac{y}{6}.\)

=> \(\frac{4x}{12}=\frac{y}{6}\)\(4x-y=42.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{4x}{12}=\frac{y}{6}=\frac{4x-y}{12-6}=\frac{42}{6}=7.\)

\(\left\{{}\begin{matrix}\frac{x}{3}=7\Rightarrow x=7.3=21\\\frac{y}{6}=7\Rightarrow y=7.6=42\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(21;42\right).\)

Chúc bạn học tốt!

1 tháng 10 2019

sao toàn trả lời thiếu vậy

21 tháng 10 2019

Tính chất của dãy tỉ số bằng nhau

21 tháng 10 2019

c, Ta có: \(\frac{x}{3}=\frac{y}{6}\)\(4x-y=42\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{6}=\frac{4x-y}{12-6}=\frac{42}{6}=7\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=7\Rightarrow x=7.3=21\\\frac{y}{6}=7\Rightarrow y=7.6=42\end{matrix}\right.\)

Vậy \(x=21\)\(y=42\)

# Băng

4 tháng 6 2017

nãy đánh đi đánh lại máy 2 lần => olm bị lỗi hay sao á , bị kiểu này suốt , bực mik quá 

================================

Hướng dẫn :

-C.M 2(x2 + y2 + z2 )\(\ge2\left(xy+yz+xz\right)\)( => dùng AM-GM)

- CM : x2 +1+y2+1+z2+1 \(\ge2\left(x+y+z\right)\) ( => nhóm x2 +1 , y2 +1  , z2 +1 => dùng AM -GM sau đó cộng vế với vế) 

Cộng vế với vế của 2 cái vừa c.m 

3(x2+y2+z2) +3 \(\ge12\)

Đến đây ok rồi

4 tháng 6 2017

\(\left(x-1\right)^2>=0< =>x^2>=2x-1.\)

Tương tự:\(y^2>=2y-1,z^2>=2z-1.\)

\(=>x^2+y^2+z^2>=2\left(x+y+z\right)-3.\left(1\right).\)

ta có:\(x^2+y^2+z^2>=xy+yz+xz.\)

Thật vậy khi ta nhân 2 vế với 2 rồi chuyển vế sẽ được

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>=0\left(lđ\right).\)

\(=>x^2+y^2+z^2>=xy+yz+xz< =>2\left(x^2+y^2+z^2\right)>=2\left(xy+yz+xz\right).\left(2\right).\)

Từ (1) và (2)

\(=>3\left(x^2+y^2+z^2\right)>=2\left(xy+yz+xz+x^2+y^2+z^2\right)-3=9.\)

\(=>x^2+y^2+z^2>=3\left(đpcm\right)\)

Dấu '=' xảy ra khi x=y=z=1

19 tháng 7 2019

Ta có : \(A=x^3y+xy^3=xy\left(x^2+y^2\right)=xy\left[\left(x+y\right)^2-2xy\right]\)

Thay x+y=3 và xy=1 vào ta có : \(A=3^2-2=7\)

Vậy A=7

19 tháng 7 2019

Ta có: \(A=x^3y+xy^3=xy\left(x^2+y^2\right)\)

              \(=xy\left[\left(x+y\right)^2-2xy\right]\)

Thay \(x+y=3\)và \(xy=1\)vào, ta đc:

\(A=3^2-2=7\)

Vậy ta tìm đc \(A=7\)

Rất vui vì giúp đc bạn !!!

1 tháng 11 2015

đặt x/3=y/4=k

=>x=3k

y=4k

=>xy=3k.4k=12.k^2 =300

=>k^2 =25

=>k=5

=>x=5.3=15

y=5.4=20

b)chờ chút

1 tháng 11 2015

a, ta co\(\frac{x}{3}=\frac{y}{4}=>\frac{x^2}{9}=\frac{x}{3}.\frac{y}{4}=\)\(\frac{300}{12}=25\)

=> x= 15=> y=10