Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x - 4 = 2 => x = 2 + 4 => x = 6
x + y = 4 mà x = 6 => y = 4 - 6 => y = -2
=> xy = 6 \(\times\) (-2) = -12
x3 - y3 = 63 - (-2)3 = 224
Ta có:\(x-4=2\Rightarrow x=6^{\left(1\right)}\)
Thay \(^{\left(1\right)}\) vào \(x+y=4\) ,ta được:
\(6+y=4\Rightarrow y=-2^{\left(2\right)}\)
Thay \(^{\left(1\right),\left(2\right)}\) vào xy ,ta được:
\(xy=6.\left(-2\right)=-12\)
thay \(^{\left(1\right),\left(2\right)}\) vào \(x^3-y^3\), ta được:
\(x^3-y^3=6^3-\left(-2\right)^3=216-\left(-8\right)=216+8=224\)
a) Ta có:
x + y = 3
=> ( x + y)2 = 9
=> x2 + 2xy + y2 = 9
=> 10 + 2xy = 9
=> 2xy = 9 - 10 = -1
=> xy = -1/2
Ta có:
x3 + y3 = (x + y)(x2 - xy + y2)
= 3.(10 + 1/2) = 63/2
b) Ta có: x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có: x3 + y3 = (x + y)(x2 + xy + y2)
= a[b + (a2 - b )/2] = ab + (a3 - b)/2.
Làm b) công thức tổng quát luôn
x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2
Thay x^2+y^2=b vào ta được:
b+2xy=a^2 => xy=(a^2-b)/2
TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2
1,Thực hiện phép tính :
a, (x + 2)9 : (x + 2)6
=(x+2)9-6
=(x+2)3
b, (x - y) 4 : (x - 2)3
=(x-y)4-3
=x-y
c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)
=(x2+2x+4)5-1
=(x2+2x+4)4
d, 2(x2 + 1)3 : 1/3(x2 + 1)
=(2÷1/3).[(x2+1)3÷(x2+1)]
=6(x2+1)2
e, 5 (x - y)5 : 5/6 (x - y)2
=(5÷5/6).[(x-y)5÷(x-y)2]
=6(x-y))3
Bài 1. Rút gọn:
\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)
\(=x-x^2+6\left(x^2+6x+9\right)\)
\(=x-x^2+6x^2+36x+54\)
\(=5x^2+37x+54\)
\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)
\(=\left(4-9x^2\right)-\left(x^2-25\right)\)
\(=-10x^2+29\)
\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)
\(=3x^2+15x+x+5-x^2+1\)
\(=2x^2+16x+6\)
\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)
\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)
\(=4x+6-6x^2-9x+6x^2-12x+6\)
\(=-17x+12\)
\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)
\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)
\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)
\(=-8x^2-5x\)
Bài 2:
a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)
=-xy
b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)
\(A=\left(x+y\right)^2-2xy=25-12=13\)
\(B=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=5\left(25-18\right)=35\)
\(C=x^2-y^2\Rightarrow C^2=x^4+y^4-2x^2y^2=\left(x^2+y^2\right)^2-4x^2y^2\)
\(C^2=\left[\left(x+y\right)^2-2xy\right]^2-4\left(xy\right)^2=\left(25-12\right)^2-4.36=25\Rightarrow C=\pm5\)
\(D=\frac{x^2+y^2}{xy}=\frac{\left(x+y\right)^2-2xy}{xy}=\frac{25-12}{6}=\frac{13}{6}\)
a) B= 2x2-3x+1
=(2x2-2x)-(x-1)
=2x(x-1)-(x-1)
=(2x-1)(x-1)
\(\left|x\right|=\frac{1}{2}\)nên ta có \(x=\frac{1}{2}\)hoặc\(x=\frac{-1}{2}\)
nếu \(x=\frac{1}{2}\)thì
B=(2*\(\frac{1}{2}\)-1)(\(\frac{1}{2}\)-1)
B=0
nếu x= -1/2
thì B= (2*(-1/2)-1)(-1/2-1)
B=(-2)*(-3/2)
B=3
a,
\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)
\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)
b,
\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)