K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Ta có:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)\(x+y=k.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y}{a+b}=\frac{k}{a+b}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{a}=\frac{k}{a+b}\Rightarrow x=\frac{k}{a+b}.a\\\frac{y}{b}=\frac{k}{a+b}\Rightarrow y=\frac{k}{a+b}.b\\\frac{z}{c}=\frac{k}{a+b}\Rightarrow z=\frac{k}{a+b}.c\end{matrix}\right.\)

Vậy \(x=\frac{k}{a+b}.a;y=\frac{k}{a+b}.b;z=\frac{k}{a+b}.c\)

Chúc bạn học tốt!

29 tháng 10 2019

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)

\(\Rightarrow\)x2=20

         y2=45

         z2=125

29 tháng 10 2019

Áp dụng .......................................

ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5

Vậy: x=10 

    y=15

    z=25

1 tháng 11 2019

Ta có: \(3x=4y=5z\) => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x+y-z}{\frac{2}{3}+\frac{1}{4}-\frac{1}{5}}=\frac{43}{\frac{43}{60}}=60\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=60\\\frac{y}{\frac{1}{4}}=60\\\frac{z}{\frac{1}{5}}=60\end{cases}}\) => \(\hept{\begin{cases}x=60\cdot\frac{1}{3}=20\\y=60\cdot\frac{1}{4}=15\\z=60\cdot\frac{1}{5}=12\end{cases}}\)

Vậy ...

13 tháng 8 2021

đề có thiếu không vậy?

13 tháng 8 2021

không ạ.

 

13 tháng 2 2016

Đầu tiên bạn lấy a+b+c=x^2+y^2+z^2-xy-yz-zx

Chúng ta sẽ chứng minh đảo ta thế a+b+c vào vế phải ta được

Vế phải=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=x^3+y^3+z^3-3xyz

Vế trái=ax+by+cz=(x^2-yz)x+(y^2-zx)y+(z^2-xy)z=x^3+y^3+z^3-3xyz

Vậy là xong VT=VP thế thì

ax+by+cz=(x+y+z)(a+b+c) cảm ơn bạn đã cho mình một bài toán hay Thank you hahahaha

4 tháng 8 2021

còn cách làm khác không ạ?

 

22 tháng 5 2017

1) \(9x^2+y^2-2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

mà: \(9\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0;2\left(z+1\right)^2\ge0\)

nên \(_{\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}}\)

2) Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\left(\frac{ayz+bxz+cxy}{xyz}\right)=0\Leftrightarrow ayz+bxz+cxy=0\)

Lại có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Rightarrow\left(\frac{x^2}{a^2}\right)+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

mà : \(\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=\frac{2xyabc^2+2yzbca^2+2xzacb^2}{a^2b^2c^2}=\frac{2abc\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=\frac{2abc\cdot0}{a^2b^2c^2}=0\)

Vậy \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

22 tháng 5 2017

1 ) \(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}}\)

\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\)

Để \(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\) thì \(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}}\)

2 ) Ta có : \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{z^2}{c^2}+\frac{2yz}{bc}=1\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm(