K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Đầu tiên bạn lấy a+b+c=x^2+y^2+z^2-xy-yz-zx

Chúng ta sẽ chứng minh đảo ta thế a+b+c vào vế phải ta được

Vế phải=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=x^3+y^3+z^3-3xyz

Vế trái=ax+by+cz=(x^2-yz)x+(y^2-zx)y+(z^2-xy)z=x^3+y^3+z^3-3xyz

Vậy là xong VT=VP thế thì

ax+by+cz=(x+y+z)(a+b+c) cảm ơn bạn đã cho mình một bài toán hay Thank you hahahaha

19 tháng 8 2017

Ta có

x2-yz=a

y2-zx=b

z2-xy=c

=>x3-xyz=ax

    y3-xyz=by

    z3-xyz=cz

=> x3+y3+z3-3xyz=ax+by+cz

Lại có

x3+y3+z3-3xyz

=(x+y)3-3x2y-3xy2+z3-3xyz

=[(x+y)3+z3]-3xy(x+y+z)

Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:

=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=(x+y+z)(x2+y2+z2-xy-yz-zx)

( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)

19 tháng 8 2017

ak mình nhầm tẹo srr nha, đến chỗ

(x+y+z)(x2+y2+z2-xy-yz-zx)

Vì x2-yz=a, y2-zx=b, z2- xy=c

=>x2+y2+z2-xy-yz-zx=a+b+c

=>ax+by+cz=(x+y+z)(a+b+c)

=> DPCM

7 tháng 3 2021

\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)

24 tháng 10 2019

Từ giả thiết 
x^2 - yz = a 
y^2 - zx = b 
z^2 - xy = c 
ta suy ra 
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau); 
và 
x^3 - xyz = ax 
y^3 - xyz = by 
z^3 - xyz = cz. 
Cộng các đẳng thức theo vế, ta được 
x^3 + y^3 + z^3 - 3xyz = ax + by + cz. 
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại 
(x + y + z)(a + b + c) = ax + by + cz. 
Suy ra ax + by + cz chia hết cho a + b + c. 

24 tháng 10 2019

bài này dùng chia hết thôi 

10 tháng 11 2021

\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)

Vậy ta được đpcm

26 tháng 2 2016

nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0

15 tháng 7 2017

CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)

20 tháng 8 2019

Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.

Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath