. Tìm GTLN của A biết A=\(\frac{3}{1+\left|3x+4\right|}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
a) \(A=\left(2x-3\right)^2-\frac{1}{2}\)
Vì: \(\left(2x-3\right)^2\ge0\)
=> \(\left(2x-3\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Vậy GTNN của A là \(-\frac{1}{2}\) khi \(x=\frac{3}{2}\)
b) \(B=\frac{1}{2}-\left|2-3x\right|\)
Vì: \(\left|2-3x\right|\ge0\)
=> \(-\left|2-3x\right|\le0\)
=> \(\frac{1}{2}-\left|2-3x\right|\le\frac{1}{2}\)
Vậy GTLN của B là \(\frac{1}{2}\)
vì \(|3x+4|\ge0\forall x\in Q\)
\(\Rightarrow1+\)\(|3x+4|\ge1\)
dấu = xảy ra <=>
3x+4=0
3x=-4
x=\(\frac{-3}{4}\)
vậy GTLN của A lớn nhất tại x=-3/4
Vì 3>0
=>Để A đạt gtln
=>1+|3x+4| nhỏ nhất
Vì |3x+4|≥0
=>1+|3x+4|≥1
Dấu "=" xảy ra <=>3x+4=0
<=>3x=-4
<=>x=-4/3
=>Max A=3<=>x=-4/3