K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

15 tháng 11 2018

Giả sử n chia hết cho 5 

=> n = 5k ( k \(\in\)N *)

Ta có ;

\(A=n^2+n+1=25k^2+5k+1=5\left(5k^2+k\right)+1\)không chia hết cho 5

( Do 1 không chia hết cho 5 )

Vậy \(A=n^2+n+1\)không chia hết cho 5

1 tháng 1 2019

ta có \(2^n\equiv0\left(mod4\right)\)với \(\left(n\in N;n>1\right)\)

Đặt \(2^n=4k\left(k\in Z^+;k\ge1\right)\)

\(\Rightarrow2^{2^n}-1=2^{4k}-1=\left(2^k\right)^4-1\)

Theo định lý fermat nhỏ ta có :

\(\left(2^k\right)^4=\left(2^k\right)^{5-1}\equiv1\left(mod5\right)\)

\(\Rightarrow\left(2^k\right)^4-1\equiv0\left(mod5\right)\)

\(\Rightarrow Q.E.D\)

25 tháng 3 2017

Muốn chia hết cho 10 thì tận cùng phải bằng 0

Ta có

5+4-1=0

=> 175+244-1321 chia hết cho 10

16 tháng 6 2018

Bài 1:

a) ta có: 12-n chia hết cho 8-n

=> 4+8-n chia hết cho 8-n

mà 8-n chia hết cho 8-n

=> 4 chia hết cho 8-n

=> 8-n thuộc Ư(4)= (1;-1;2;-2;4;-4)

nếu 8-n = 1 => n = 7 (TM)

8-n = -1 => n = 9 (TM)

8-n = 2 => n = 6 (TM)

8-n = -2 =>n = 10 (TM)

8-n = 4 => n =4 (TM)

8-n = -4 => n = 12 (TM)

KL: n  = ( 7;9;6;10;4;12)

b) ta có: n2 + 6 chia hết cho n2+1

=> n2 + 1 + 5 chia hết cho n2+1

mà n2+1 chia hết cho n2+1

=> 5 chia hết cho n2+1

=> n2+1 thuộc Ư(5)=(1;-1;5;-5)

nếu n2+1 = 1 => n2=0 => n = 0 (Loại)

n2+1 = -1 => n2 = -2 => không tìm được n ( vì lũy thừa bậc chẵn có giá trị nguyên dương)

n2+1 = 5 => n2 = 4 => n=2 hoặc n= -2

n2+1 = -5 => n2 = -6 => không tìm được n

KL: n = (2;-2)

16 tháng 6 2018

Bài 2:

Gọi số tự nhiên cần tìm là: a 

ta có: a chia 4 dư 1 => a-1 chia hết cho 4 ( a chia hết cho 7)

a chia 5 dư 1 => a-1 chia hết cho 5

a chia 6 dư 1 => a-1 chia hết cho 6

=> a-1 chia hết cho 4;5;6 => a-1 thuộc BC(4;5;6)

BCNN(4;5;6) = 60

BC(4;5;6) = (60;120;180; 240;300;360;...)

mà a < 400

=> a-1 thuộc ( 60;120;180;240;300;360)

nếu a-1 = 60 => a=61 (Loại, vì không chia hết cho 7)

a-1 = 120 => a = 121 (loại)

a-1 = 180 => a = 181 (Loại)

a-1 = 240 => a = 241 (Loại)

a-1 = 300 => a = 301 ( TM)

a-1 = 360 => a = 361 (Loại)

KL: số cần tìm là: 301

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

6 tháng 8 2021

cần gấp bài 1 và bài 3, bài 2 k có cx đc 

 

5 tháng 10 2017

a) - Xét trường hợp chia hết cho 2

 + Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.

- Xét trường hợp chia hết cho 3.

+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.

Vậy n.(n+1).(2n+1) chia hết cho 2.

Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)

b) 10^9 + 2 = 100.....02.

Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)

c) 10^10 - 1 = 99...99

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

d) 10^8 - 1 = 99...9

Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)

E) 10^8 + 8 = 10...08 

Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)