K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

1 tháng 1 2019

ta có \(2^n\equiv0\left(mod4\right)\)với \(\left(n\in N;n>1\right)\)

Đặt \(2^n=4k\left(k\in Z^+;k\ge1\right)\)

\(\Rightarrow2^{2^n}-1=2^{4k}-1=\left(2^k\right)^4-1\)

Theo định lý fermat nhỏ ta có :

\(\left(2^k\right)^4=\left(2^k\right)^{5-1}\equiv1\left(mod5\right)\)

\(\Rightarrow\left(2^k\right)^4-1\equiv0\left(mod5\right)\)

\(\Rightarrow Q.E.D\)

6 tháng 8 2021

cần gấp bài 1 và bài 3, bài 2 k có cx đc 

 

20 tháng 9 2015

Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11

giải giúp đi nào

 

26 tháng 8 2015

a.    87 - 218 = 221 - 218 = 217 ( 24 - 2) = 217 ( 16-2) = 217 * 14 chia het cho 14

b.    55 - 54 + 53 = 53 ( 52 - 5 + 1) = 53 * 21  chia het cho 7

con nhung bai lai ban tu giai nhe , con neu thac mac hoi ban