\(\frac{1}{8}\cdot16^x=2^x.tìmx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2.4+2.4.8+4.8.16+8.16.32}{3.4+2.6.8+4.12.16+8.24.32}\)
\(B=\frac{2.4+2.4.8+4.2.4.16+2.4.16.32}{3.4+2.2.3.2.4+4.3.4.16+2.4.8.3.32}\)
\(B=\frac{2.4.\left(1+8+4.16+16.32\right)}{3.4.\left(1+2.2.2+4.16+2.8.32\right)}\)
\(B=\frac{2.4.\left(1+8+4.16+16.32\right)}{3.4.\left(1+8+4.16+16.32\right)}\)
\(B=\frac{2}{3}\)
Chúc bn học tốt !!!!
\(\frac{1}{8}.16^n=2^n\)
\(\frac{16^n}{8}=2^n\)
\(\Rightarrow\frac{2^{4n}}{2^3}=2^n\)
\(2^{4n-3}=2^n\)
\(4n-3=1\)
\(\Rightarrow n=1\)
Vậy n = 1
\(\frac{1}{8}.16^n=2^n\Rightarrow\frac{1}{8}=\frac{2^n}{16^n}\Rightarrow\frac{1}{8}=\left(\frac{2}{16}\right)^n\Rightarrow\frac{1}{8}=\left(\frac{1}{8}\right)^n\Rightarrow n=1\)
vậy n=1
\(\dfrac{1.2.4+2.4.8+4.8.16+8.16.32}{1.3.4+2.6.8+4.12.16+8.24.32}\)
\(=\dfrac{8.\left(1+8+4.16+16.32\right)}{12.\left(1+8+4.16+16.32\right)}\)
\(=\dfrac{8}{12}=\dfrac{2}{3}\)
\(=\dfrac{8+8\cdot8+8\cdot64+8\cdot512}{12+12\cdot8+12\cdot64+12\cdot512}=\dfrac{8}{12}=\dfrac{2}{3}\)
tử số : 2.4 + 4.8 + 8.12 + 12.16 + 16.20
= 2.(1.2+2.4+4.6+6.8+8.10)
ta được 2. A=( 1.2+2.4+4.6+6.8+8.10) / ( 1.2+2.4+4.6+6.8+8.10)
=> A=2
\(\frac{1}{8}.16^n=2^n\)
\(16^n=2^n:\frac{1}{8}\)
\(16^n=2^n.8\)
\(16^n=2^n.2^3\)
\(\left(2^4\right)^n=2^{n+3}\)
\(2^{4n}=2^{n+3}\)
\(\Rightarrow4n=n+3\)
\(4n-n=3\)
\(3n=3\)
\(n=1\)
\(KL:n=1\)
CHÚC BN HỌC TỐT!!!!!
\(\frac{1}{8}.16^x=2^x\\ \Leftrightarrow\frac{2^x}{16^x}=\frac{1}{8}\\ \Leftrightarrow\left(\frac{2}{16}\right)^x=\frac{1}{8}\\ \Leftrightarrow\left(\frac{1}{8}\right)^x=\frac{1}{8}\Leftrightarrow x=1\)
Vậy x = 1
\(\frac{1}{8}.16^x=2^x\)
\(\Rightarrow\frac{1}{8}=\frac{2^x}{16^x}\)
\(\Rightarrow\frac{1}{8}=\left(\frac{2}{16}\right)^x\)
\(\Rightarrow\frac{1}{8}=\left(\frac{1}{8}\right)^x\)
\(\Rightarrow\left(\frac{1}{8}\right)^x=\left(\frac{1}{8}\right)^1\)
\(\Rightarrow x=1\)
Vậy \(x=1.\)
Chúc bạn học tốt!