K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

\(51^n+47^{102}\)

\(=\overline{.....1}+\overline{.....9}\)

\(=\overline{.....0}⋮10\)

\(17^5+24^4-13^{21}\)

\(=\overline{....7}+\overline{...6}-\overline{.....3}\)

\(=\overline{.....0}⋮10\)

16 tháng 2 2020

a) Ta có : 51n=\(\overline{...1}\)

                47102=472.(474)25=\(\left(\overline{...9}\right).\left(\overline{...1}\right)=\overline{...9}\)

\(\Rightarrow51^n+47^{102}=\left(\overline{...1}\right)+\left(\overline{...9}\right)=\overline{...0}⋮10\)

Vậy 51n+47102\(⋮\)10.

b) Ta có : \(17^5=17.17^4=17.\left(\overline{...1}\right)=\overline{...7}\)

                \(24^4=\overline{...6}\)

                 \(13^{21}=13.\left(13^4\right)^5=13.\left(\overline{...1}\right)=\overline{...3}\)

\(\Rightarrow17^5+24^4-13^{21}=\left(\overline{...7}\right)+\left(\overline{...6}\right)-\left(\overline{...3}\right)=\overline{...0}⋮10\)

Vậy 175+244+1321\(⋮\)10

24 tháng 7 2018

A= ....1+(47^4)^25*47^2=....1+.....1*....9=....1+....9=....0chia hết cho 10

B=17^4*17+(24^2)^2-(13^4)^5*13=....1*17+....6-....1*13=.....7+....6-.....13=....3-....3=....0chia hết cho 10

27 tháng 9 2015

a) 172008  = (174)502 = (...1)502 = (....1)

112008 = (....1)

32008 = (34)502 = (...1)502  = (...1)

=> 172008 - 112008 - 32008 = (...1) - (...1) - (...1)

Hiệu 172008 - 112008 tận cùng là 0 => 172008 - 112008 - 32008 tận cùng là 9

b) 1725 = (174)6.17 = (...1)6.17 = (...7)

244 = (242)2 = (...6)2 = (...6)

1321 = (134)5.13 = (...1)5.13 = (...3)

=> B = 1725 - 24- 1321 = (...7) + (...6) - (....3) = (....0) => B chia hết cho 10

c) Tương tự

23 tháng 7 2018

hóng ......ahahah