Giai phương trình: \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}=\sqrt[3]{4x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{5-x}=b\\\sqrt[3]{4x-3}=c\\\sqrt[3]{9-2x}=d\end{matrix}\right.\)
Ta được: \(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)
TH1:
Nếu \(a+b=c+d=0\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x+1=-\left(5-x\right)\\4x-3=-\left(9-2x\right)\end{matrix}\right.\) \(\Rightarrow x=-3\)
TH2: nếu \(a+b=c+d\ne0\)
\(a+b=c+d\Leftrightarrow\left(a+b\right)^3=\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3+d^3+3cd\left(c+d\right)\)
\(\Leftrightarrow ab\left(a+b\right)=cd\left(c+d\right)\) (do \(a^3+b^3=c^3+d^3\))
\(\Leftrightarrow ab=cd\) (do \(a+b=c+d\ne0\))
\(\Leftrightarrow\sqrt[3]{\left(3x+1\right)\left(5-x\right)}=\sqrt[3]{\left(4x-3\right)\left(9-2x\right)}\)
\(\Leftrightarrow\left(3x+1\right)\left(5-x\right)=\left(4x-3\right)\left(9-2x\right)\)
\(\Leftrightarrow5x^2-28x+32=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{8}{5}\end{matrix}\right.\)
Vậy \(x=\left\{-3;4;\dfrac{8}{5}\right\}\)
Cái cuối này căn bậc 2 hay căn bậc 3 em? Căn bậc 2 thì hơi nghi ngờ về khả năng giải được của pt này.
Sử dụng hằng đẳng thức \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right),\) từ phương trình tương đương với \(\sqrt[3]{3x+1},\sqrt[3]{5-x},\sqrt[3]{2x-9}\) có hai số tổng bằng 0. Từ đây
\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}=0\Leftrightarrow3x+1=x-5\Leftrightarrow x=-3.\)
\(\sqrt[3]{2x-9}+\sqrt[3]{5-x}=0\Leftrightarrow2x-9=x-5\Leftrightarrow x=4.\)
\(\sqrt[3]{2x-9}+\sqrt[3]{3x+1}=0\Leftrightarrow2x-9=-3x-1\Leftrightarrow x=\frac{8}{5}.\)
a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)
\(\Leftrightarrow2x+9=5-4x\)
\(\Leftrightarrow6x=-4\)
hay \(x=-\dfrac{2}{3}\left(nhận\right)\)
b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)
\(\Leftrightarrow2x-1=x-1\)
hay x=0(loại)
c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2+3x=x\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
a. \(\sqrt{2x+9}=\sqrt{5-4x}\)
<=> 2x + 9 = 5 - 4x
<=> 2x + 4x = 5 - 9
<=> 6x = -4
<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)
Pt tương đương:
\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\)=\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\)
\(\Leftrightarrow\)-3\(\sqrt[3]{\text{(4x-3)(3x+1)}}\)(\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\))=3\(\sqrt[3]{\left(5-x\right)\left(2x-9\right)}\)(\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\))
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt[3]{4x-3}-\sqrt[3]{3x+1}=\sqrt[3]{5-x}+\sqrt[3]{2x-9}=0\left(1\right)\\3\sqrt[3]{-12x^2+5x+3}=3\sqrt[3]{-2x^2+19x-45}\left(2\right)\end{cases}}\)
(1)<=>4x-3=3x+1 và x-5=2x-9<=>x=4
(2)<=>-12x2+5x+3=-2x2+19x-45<=>-5x2-7x+24=0<=>x=8/5 và x=-3
bạn thử các giá trị x=4,x=8/5 và x=-3 vào pt và kết luận
mik ko hieu vi sao ban suy ra duoc (1) va (2)
bn co the viet ro ra duoc ko ?
theo mik thay thi 2 pt do dau co tuong duong
c: Ta có: \(\sqrt{2x}=\sqrt{5}\)
\(\Leftrightarrow2x=5\)
hay \(x=\dfrac{5}{2}\)
d: Ta có: \(\sqrt{3x-1}=4\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
hay \(x=\dfrac{17}{3}\)
Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)
\(\Leftrightarrow2\left|x-1\right|=6\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{2x-9}=\sqrt[3]{4x-3}+\sqrt[3]{x-5}=k\)
\(\Leftrightarrow5x-8+3\sqrt[3]{\left(3x+1\right)\left(2x-9\right)}.k=5x-8+3\sqrt[3]{\left(4x-3\right)\left(x-5\right)}.k\)
\(\Leftrightarrow\left[{}\begin{matrix}k=0\\\left(3x+1\right)\left(2x-9\right)=\left(4x-3\right)\left(x-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=9-2x\\6x^2-25x-9=4x^2-23x+15\end{matrix}\right.\)
bạn giải thích giúp mình hàng thứ 2 đc k?