\(\sqrt[]{4x^2-4x+9=3}\)         ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: Ta có: \(\sqrt{2x}=\sqrt{5}\)

\(\Leftrightarrow2x=5\)

hay \(x=\dfrac{5}{2}\)

d: Ta có: \(\sqrt{3x-1}=4\)

\(\Leftrightarrow3x-1=16\)

\(\Leftrightarrow3x=17\)

hay \(x=\dfrac{17}{3}\)

Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)

\(\Leftrightarrow2\left|x-1\right|=6\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

a)

ĐK: \(\forall x\in\mathbb{R}\)

Ta có: \(\sqrt{3x^2}-\sqrt{12}=0\)

\(\Rightarrow \sqrt{3x^2}=\sqrt{12}\)

\(\Rightarrow 3x^2=12\Rightarrow x^2=4\Rightarrow x=\pm 2\) (đều thỏa mãn)

b) ĐK: \(\forall x\in\mathbb{R}\)

\(\sqrt{(x-3)^2}=9\)

\(\Leftrightarrow |x-3|=9\Rightarrow \left[\begin{matrix} x-3=9\\ x-3=-9\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=12\\ x=-6\end{matrix}\right.\)

c) ĐK: $x\in\mathbb{R}$
\(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow \sqrt{(2x)^2+2.2x+1}=6\)

\(\Leftrightarrow \sqrt{(2x+1)^2}=6\)

\(\Leftrightarrow |2x+1|=6\)

\(\Rightarrow \left[\begin{matrix} 2x+1=6\\ 2x+1=-6\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=-\frac{7}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

d) ĐK: \(x\geq 1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow \sqrt{16(x-1)}-\sqrt{9(x-1)}+\sqrt{4(x-1)}+\sqrt{x-1}=8\)

\(\Leftrightarrow 4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow 4\sqrt{x-1}=8\Rightarrow \sqrt{x-1}=2\)

\(\Rightarrow x=2^2+1=5\) (thỏa mãn)

e)

ĐK: \(-4\leq x\leq \frac{1}{2}\)

\(\sqrt{1-x}+\sqrt{1-2x}=\sqrt{x+4}\)

\(\Leftrightarrow \sqrt{1-x}-1+\sqrt{1-2x}-1=\sqrt{x+4}-2\)

\(\Leftrightarrow \frac{(1-x)-1}{\sqrt{1-x}+1}+\frac{(1-2x)-1}{\sqrt{1-2x}+1}=\frac{(x+4)-2^2}{\sqrt{x+4}+2}\)

\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+\frac{-2x}{\sqrt{1-2x}+1}=\frac{x}{\sqrt{x+4}+2}\)

\(\Leftrightarrow x\left(\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{1-x}+1}+\frac{2}{\sqrt{1-2x}+1}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn lớn hơn $0$

Do đó: \(x=0\) là nghiệm duy nhất của pt.

10 tháng 5 2018

1000 bang 2

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

28 tháng 7 2019

Mk gợi ý nha phần còn lại bạn làm nốt nhá

\(a,\sqrt{2x-1}-\sqrt{3}=\sqrt{x^2+2x-5}-\sqrt{3}\)

\(\Leftrightarrow\frac{2x-4}{\sqrt{2x-1}+\sqrt{3}}=\frac{\left(x-2\right)\left(x+4\right)}{\sqrt{x^2+2x-5}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{3}}-\frac{x+4}{\sqrt{x^2+2x-5}+\sqrt{3}}\right)=0\)

\(b,\sqrt{x\left(x^3-3x+1\right)}=\sqrt{x\left(x^3-x\right)}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x^3-3x+1}-\sqrt{x^3-x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^3-3x+1=x^3-x\end{cases}}\)

Câu f sai đề thì phải 

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(2x-1\right)}=x\)

\(\sqrt{x}\left(\sqrt{x-1}+\sqrt{2x-1}-\sqrt{x}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x-1}+\frac{2x-2}{\sqrt{2x-1}+1}+\frac{x-1}{1+\sqrt{x}}=0\end{cases}}\)

Câu g bình lên sau đó chuyển vế và bình lên 1 lần nữa

\(h,pt\Leftrightarrow\sqrt{2x-3}+6-\sqrt{4x+3}-9=0\)

Liên hợp nha bạn

Có mấy câu mk ko bít làm mong bạn thông cảm