Cho x>0, y>0, z>0 thoả mãn x^2017+y^2017+z^2017=3. Tính gtln của M=x^2+y^2+z^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : A = x^2017+x^2017+1+1+.....+1 ( 2015 số 1 )
Áp dụng bđt cosi thì :
A >= \(2017\sqrt[2017]{x^{2017}.x^{2017}}\) = 2017.x^2
=> x^2 < = 2x^2017+2015/2017
Tương tự : y^2 < = 2y^2017+2015/2017 ; z^2 < = 2z^2017+2015/2017
=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+6045/2017 = 2.3+6045/2017 = 3
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTLN của x^2+y^2+z^2 = 3 <=> x=y=z=1
Tk mk nha
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
Đặt x/2015=y/2016=z/2017=k
=> x=2015k
=> y=2016k
=> z=2017k
Ta có
•(x-z)3=(2015k-2017k)3=(-2k)3=-8k3 (1)
•8(x-y)2(y-z)=8(2015k-2016k)2(2016k-2017k)= 8(-k)2(-k)=-8k3 (2)
Từ (1) và (2) => (x-z)3=8(x-y)2(y-z)
https://olm.vn/hoi-dap/detail/97024326380.html
Tham khảo ở link này
Học tốt!!!!!!!!!!