Cho hình bình hành ABCD, gọi M và N lần lượt là trung điểm của AB và CD, P và Q lần lượt là giao điểm của BD với AN và CM. Chứng minh
a) AMCN là hình bình hành
b) DP = PQ = QB
c) Gọi E là giao điểm CP và AD, F là giao điểm của AQ và BC. Nếu hình bình hành ABCD có AB = AC thì tứ giác AECF là hình gì?
P/s: Mình đã làm câu a và b chỉ là không biết làm câu c thôi mong các bạn giúp
bạn lên mạng mà xem
#Tự vẽ hình nhé bạn#
a) Vì AB // CD nên AM // NC ( 1 )
Ta có : AM = 1 / 2 AB( vì M là trung điểm AB )
NC = 1 / 2 CD ( vì N là trung điểm CD )
Mà AB = CD ( vì ◇ABCD là hình bình hành )
\(\Rightarrow\)AM = NC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)◇AMNC là hình bình hành
b) Xét \(\Delta\)DQC có :
\(\Rightarrow\)P là trung điểm DQ
\(\Rightarrow\)PD = PQ ( 3 )
Xét \(\Delta\)ABP có :
\(\Rightarrow\)Q là trung điểm BP
\(\Rightarrow\)BQ = PQ ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)DP = PQ = QB