Cho a, b, c là 3 cạnh của 1 tam giác, c là cạnh lớn nhất.
Chứng minh rằng: \(a^{\frac{3}{4}}+b^{\frac{3}{4}}>c^{\frac{3}{4}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề mày tự nghĩ à ??? cái đề rẻ rách này mà cũng lớp 9 á ??
a=3 b=4
3^2+4^2=25
suy ra c=5
suy ra nó là số tự nhiên ??
Đặt \(\hept{\begin{cases}x=b+c-a\\y=a+c-b\\z=a+b-c\end{cases}}\left(x;y;z>0\right)\).Ta có:
\(x+y=b+c-a+a+c-b=2c\Rightarrow c=\frac{x+y}{2}\)
\(y+z=a+c-b+a+b-c=2a\Rightarrow a=\frac{y+z}{2}\)
\(z+x=a+b-c+b+c-a=2b\Rightarrow b=\frac{z+x}{2}\)
Do đó: \(A=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(\Leftrightarrow2A=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\ge6\) (BĐT AM-GM)
\(\Rightarrow A\ge\frac{6}{2}=3\).Dấu "=" khi a=b=c
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
\(\Leftrightarrow\left(\frac{a}{c}\right)^{\frac{3}{4}}+\left(\frac{b}{c}\right)^{\frac{3}{4}}>1\)
Do \(\left\{{}\begin{matrix}0< \frac{a}{c}< 1\\0< \frac{b}{c}< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(\frac{a}{c}\right)^{\frac{3}{4}}>\frac{a}{c}\\\left(\frac{b}{c}\right)^{\frac{3}{4}}>\frac{b}{c}\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{c}\right)^{\frac{3}{4}}+\left(\frac{b}{c}\right)^{\frac{3}{4}}>\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}>1\) (đpcm)
kk