Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
\(VT-VP=\frac{\Sigma_{cyc}\left(a-b+c\right)\left(a-b\right)^2}{abc}\ge0\) ( do a,b,c là 3 cạnh của 1 tam giác )
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{2}{c}\)
\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{\left(1+1\right)^2}{c+a-b+a+b-c}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{2}{b}\)
Cộng lại theo vế rồi chia cho 2, ta có đpcm
Dấu "=" xảy ra khi a = b = c
Bài làm:
Ta xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(BĐT Cauchy dạng cộng mẫu)
Tương tự ta chứng minh được:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)và \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng vế 3 bất đẳng thức trên ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi: \(a=b=c\)
Sa
Link https://lazi.vn/edu/exercise/cho-a-b-c-la-do-dai-3-canh-cua-mot-tam-giac-va-p-la-nua-chu-vi-chung-minh-1-p-a-1-p-b-1-p-c-21-a-a-b-1-c
Ta có
\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)
\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)
\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)
Nhân vế theo vế ta được
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)
Dấu = xảy ra khi a = b = c hay tam giác ABC đều
Ta có
\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)
\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)
\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)
Nhân vế theo vế ta được
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)
Dấu = xảy ra khi a = b = c hay tam giác ABC đều
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)
Ta có
\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)
\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)
\(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)
\(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)
Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)
Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)
Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)
\(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)
\(\Rightarrow a=b=c\)
Vậy a, b, c là độ dài ba cạnh của một tam giác đều